LegoPET: Hierarchical Feature Guided Conditional Diffusion for PET Image Reconstruction
- URL: http://arxiv.org/abs/2411.16629v1
- Date: Mon, 25 Nov 2024 18:05:34 GMT
- Title: LegoPET: Hierarchical Feature Guided Conditional Diffusion for PET Image Reconstruction
- Authors: Yiran Sun, Osama Mawlawi,
- Abstract summary: We introduce LegoPET, a hierarchical feature guided conditional diffusion model for high-perceptual quality PET image reconstruction from sinograms.
LegoPET not only improves the performance of cDPMs but also surpasses recent DL-based PET image reconstruction techniques in terms of visual quality and pixel-level PSNR/SSIM metrics.
- Score: 0.7366405857677227
- License:
- Abstract: Positron emission tomography (PET) is widely utilized for cancer detection due to its ability to visualize functional and biological processes in vivo. PET images are usually reconstructed from histogrammed raw data (sinograms) using traditional iterative techniques (e.g., OSEM, MLEM). Recently, deep learning (DL) methods have shown promise by directly mapping raw sinogram data to PET images. However, DL approaches that are regression-based or GAN-based often produce overly smoothed images or introduce various artifacts respectively. Image-conditioned diffusion probabilistic models (cDPMs) are another class of likelihood-based DL techniques capable of generating highly realistic and controllable images. While cDPMs have notable strengths, they still face challenges such as maintain correspondence and consistency between input and output images when they are from different domains (e.g., sinogram vs. image domain) as well as slow convergence rates. To address these limitations, we introduce LegoPET, a hierarchical feature guided conditional diffusion model for high-perceptual quality PET image reconstruction from sinograms. We conducted several experiments demonstrating that LegoPET not only improves the performance of cDPMs but also surpasses recent DL-based PET image reconstruction techniques in terms of visual quality and pixel-level PSNR/SSIM metrics. Our code is available at https://github.com/yransun/LegoPET.
Related papers
- Image2Points:A 3D Point-based Context Clusters GAN for High-Quality PET
Image Reconstruction [47.398304117228584]
We propose a 3D point-based context clusters GAN, namely PCC-GAN, to reconstruct high-quality SPET images from LPET.
Experiments on both clinical and phantom datasets demonstrate that our PCC-GAN outperforms the state-of-the-art reconstruction methods.
arXiv Detail & Related papers (2024-02-01T06:47:56Z) - On quantifying and improving realism of images generated with diffusion [50.37578424163951]
We propose a metric, called Image Realism Score (IRS), computed from five statistical measures of a given image.
IRS is easily usable as a measure to classify a given image as real or fake.
We experimentally establish the model- and data-agnostic nature of the proposed IRS by successfully detecting fake images generated by Stable Diffusion Model (SDM), Dalle2, Midjourney and BigGAN.
Our efforts have also led to Gen-100 dataset, which provides 1,000 samples for 100 classes generated by four high-quality models.
arXiv Detail & Related papers (2023-09-26T08:32:55Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
This paper presents a coarse-to-fine PET reconstruction framework that consists of a coarse prediction module (CPM) and an iterative refinement module (IRM)
By delegating most of the computational overhead to the CPM, the overall sampling speed of our method can be significantly improved.
Two additional strategies, i.e., an auxiliary guidance strategy and a contrastive diffusion strategy, are proposed and integrated into the reconstruction process.
arXiv Detail & Related papers (2023-08-20T04:10:36Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
Recent advancements in diffusion models have enabled the generation of realistic deepfakes from textual prompts in natural language.
We pioneer a systematic study on deepfake detection generated by state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-04-02T10:25:09Z) - DULDA: Dual-domain Unsupervised Learned Descent Algorithm for PET image
reconstruction [18.89418916531878]
We propose a dual-domain unsupervised PET image reconstruction method based on learned decent algorithm.
Specifically, we unroll the gradient method with a learnable l2,1 norm for PET image reconstruction problem.
The experimental results domonstrate the superior performance of proposed method compared with maximum likelihood expectation maximazation (MLEM), total-variation regularized EM (EM-TV) and deep image prior based method (DIP)
arXiv Detail & Related papers (2023-03-08T15:29:17Z) - Ultra-High-Definition Low-Light Image Enhancement: A Benchmark and
Transformer-Based Method [51.30748775681917]
We consider the task of low-light image enhancement (LLIE) and introduce a large-scale database consisting of images at 4K and 8K resolution.
We conduct systematic benchmarking studies and provide a comparison of current LLIE algorithms.
As a second contribution, we introduce LLFormer, a transformer-based low-light enhancement method.
arXiv Detail & Related papers (2022-12-22T09:05:07Z) - List-Mode PET Image Reconstruction Using Deep Image Prior [3.6427817678422016]
List-mode positron emission tomography (PET) image reconstruction is an important tool for PET scanners.
Deep learning is one possible solution to enhance the quality of PET image reconstruction.
In this study, we propose a novel list-mode PET image reconstruction method using an unsupervised CNN called deep image prior.
arXiv Detail & Related papers (2022-04-28T10:44:33Z) - Direct PET Image Reconstruction Incorporating Deep Image Prior and a
Forward Projection Model [0.0]
Convolutional neural networks (CNNs) have recently achieved remarkable performance in positron emission tomography (PET) image reconstruction.
We propose an unsupervised direct PET image reconstruction method that incorporates a deep image prior framework.
Our proposed method incorporates a forward projection model with a loss function to achieve unsupervised direct PET image reconstruction from sinograms.
arXiv Detail & Related papers (2021-09-02T08:07:58Z) - Direct Reconstruction of Linear Parametric Images from Dynamic PET Using
Nonlocal Deep Image Prior [13.747210115485487]
Direct reconstruction methods have been developed to estimate parametric images directly from the measured PET sinograms.
Due to limited counts received, signal-to-noise-ratio (SNR) and resolution of parametric images produced by direct reconstruction frameworks are still limited.
Recently supervised deep learning methods have been successfully applied to medical imaging denoising/reconstruction when large number of high-quality training labels are available.
arXiv Detail & Related papers (2021-06-18T21:30:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.