Fast training of large kernel models with delayed projections
- URL: http://arxiv.org/abs/2411.16658v1
- Date: Mon, 25 Nov 2024 18:42:13 GMT
- Title: Fast training of large kernel models with delayed projections
- Authors: Amirhesam Abedsoltan, Siyuan Ma, Parthe Pandit, Mikhail Belkin,
- Abstract summary: We present a new methodology for building kernel machines that can scale efficiently with both data size and model size.
Our algorithm introduces delayed projections to Preconditioned Gradient Descent (PSGD) allowing the training of much larger models than was previously feasible.
We validate our algorithm, EigenPro4, demonstrating drastic training speed up over the existing methods while maintaining comparable or better classification accuracy.
- Score: 14.459817519150997
- License:
- Abstract: Classical kernel machines have historically faced significant challenges in scaling to large datasets and model sizes--a key ingredient that has driven the success of neural networks. In this paper, we present a new methodology for building kernel machines that can scale efficiently with both data size and model size. Our algorithm introduces delayed projections to Preconditioned Stochastic Gradient Descent (PSGD) allowing the training of much larger models than was previously feasible, pushing the practical limits of kernel-based learning. We validate our algorithm, EigenPro4, across multiple datasets, demonstrating drastic training speed up over the existing methods while maintaining comparable or better classification accuracy.
Related papers
- Ex Uno Pluria: Insights on Ensembling in Low Precision Number Systems [16.89998201009075]
Ensembling deep neural networks has shown promise in improving generalization performance.
We propose low precision ensembling, where ensemble members are derived from a single model within low precision number systems.
Our empirical analysis demonstrates the effectiveness of our proposed low precision ensembling method compared to existing ensemble approaches.
arXiv Detail & Related papers (2024-11-22T11:18:20Z) - Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference [55.150117654242706]
We show that model selection for computation-aware GPs trained on 1.8 million data points can be done within a few hours on a single GPU.
As a result of this work, Gaussian processes can be trained on large-scale datasets without significantly compromising their ability to quantify uncertainty.
arXiv Detail & Related papers (2024-11-01T21:11:48Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - A Dynamical Model of Neural Scaling Laws [79.59705237659547]
We analyze a random feature model trained with gradient descent as a solvable model of network training and generalization.
Our theory shows how the gap between training and test loss can gradually build up over time due to repeated reuse of data.
arXiv Detail & Related papers (2024-02-02T01:41:38Z) - Fast-NTK: Parameter-Efficient Unlearning for Large-Scale Models [17.34908967455907]
machine unlearning'' proposes the selective removal of unwanted data without the need for retraining from scratch.
Fast-NTK is a novel NTK-based unlearning algorithm that significantly reduces the computational complexity.
arXiv Detail & Related papers (2023-12-22T18:55:45Z) - Efficiently Robustify Pre-trained Models [18.392732966487582]
robustness of large scale models towards real-world settings is still a less-explored topic.
We first benchmark the performance of these models under different perturbations and datasets.
We then discuss on how complete model fine-tuning based existing robustification schemes might not be a scalable option given very large scale networks.
arXiv Detail & Related papers (2023-09-14T08:07:49Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - Toward Large Kernel Models [16.704246627541103]
We introduce EigenPro 3.0, an algorithm based on projected dual preconditioned SGD.
We show scaling to model and data sizes which have not been possible with existing kernel methods.
arXiv Detail & Related papers (2023-02-06T07:57:50Z) - Boosting Low-Data Instance Segmentation by Unsupervised Pre-training
with Saliency Prompt [103.58323875748427]
This work offers a novel unsupervised pre-training solution for low-data regimes.
Inspired by the recent success of the Prompting technique, we introduce a new pre-training method that boosts QEIS models.
Experimental results show that our method significantly boosts several QEIS models on three datasets.
arXiv Detail & Related papers (2023-02-02T15:49:03Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.