PriorDiffusion: Leverage Language Prior in Diffusion Models for Monocular Depth Estimation
- URL: http://arxiv.org/abs/2411.16750v1
- Date: Sun, 24 Nov 2024 05:07:10 GMT
- Title: PriorDiffusion: Leverage Language Prior in Diffusion Models for Monocular Depth Estimation
- Authors: Ziyao Zeng, Jingcheng Ni, Daniel Wang, Patrick Rim, Younjoon Chung, Fengyu Yang, Byung-Woo Hong, Alex Wong,
- Abstract summary: We argue that language priors can enhance monocular depth estimation by leveraging the geometric prior aligned with the language description.
We propose PriorDiffusion, using a pre-trained text-to-image diffusion model that takes both image and text description that aligned with the scene to infer affine-invariant depth.
We show that language priors can guide the model's attention to specific regions and help it perceive the 3D scene in alignment with user intent.
- Score: 10.856377349228927
- License:
- Abstract: This paper explores the potential of leveraging language priors learned by text-to-image diffusion models to address ambiguity and visual nuisance in monocular depth estimation. Particularly, traditional monocular depth estimation suffers from inherent ambiguity due to the absence of stereo or multi-view depth cues, and nuisance due to lack of robustness of vision. We argue that language prior in diffusion models can enhance monocular depth estimation by leveraging the geometric prior aligned with the language description, which is learned during text-to-image pre-training. To generate images that reflect the text properly, the model must comprehend the size and shape of specified objects, their spatial relationship, and the scale of the scene. Thus, we propose PriorDiffusion, using a pre-trained text-to-image diffusion model that takes both image and text description that aligned with the scene to infer affine-invariant depth through a denoising process. We also show that language priors can guide the model's attention to specific regions and help it perceive the 3D scene in alignment with user intent. Simultaneously, it acts as a constraint to accelerate the convergence of the diffusion trajectory, since learning 3D properties from a condensed, low-dimensional language feature is more efficient compared with learning from a redundant, high-dimensional image feature. By training on HyperSim and Virtual KITTI, we achieve state-of-the-art zero-shot performance and a faster convergence speed, compared with other diffusion-based depth estimators, across NYUv2, KITTI, ETH3D, and ScanNet.
Related papers
- Language Driven Occupancy Prediction [11.208411421996052]
We introduce LOcc, an effective and generalizable framework for open-vocabulary occupancy prediction.
Our pipeline presents a feasible way to dig into the valuable semantic information of images.
LOcc effectively uses the generated language ground truth to guide the learning of 3D language volume.
arXiv Detail & Related papers (2024-11-25T03:47:10Z) - Human-Object Interaction Detection Collaborated with Large Relation-driven Diffusion Models [65.82564074712836]
We introduce DIFfusionHOI, a new HOI detector shedding light on text-to-image diffusion models.
We first devise an inversion-based strategy to learn the expression of relation patterns between humans and objects in embedding space.
These learned relation embeddings then serve as textual prompts, to steer diffusion models generate images that depict specific interactions.
arXiv Detail & Related papers (2024-10-26T12:00:33Z) - Open-Vocabulary 3D Semantic Segmentation with Text-to-Image Diffusion Models [57.37244894146089]
We propose Diff2Scene, which leverages frozen representations from text-image generative models, along with salient-aware and geometric-aware masks, for open-vocabulary 3D semantic segmentation and visual grounding tasks.
We show that it outperforms competitive baselines and achieves significant improvements over state-of-the-art methods.
arXiv Detail & Related papers (2024-07-18T16:20:56Z) - OV9D: Open-Vocabulary Category-Level 9D Object Pose and Size Estimation [56.028185293563325]
This paper studies a new open-set problem, the open-vocabulary category-level object pose and size estimation.
We first introduce OO3D-9D, a large-scale photorealistic dataset for this task.
We then propose a framework built on pre-trained DinoV2 and text-to-image stable diffusion models.
arXiv Detail & Related papers (2024-03-19T03:09:24Z) - Learning to Adapt CLIP for Few-Shot Monocular Depth Estimation [31.34615135846137]
We propose a few-shot-based method which learns to adapt the Vision-Language Models for monocular depth estimation.
Specifically, it assigns different depth bins for different scenes, which can be selected by the model during inference.
With only one image per scene for training, our extensive experiment results on the NYU V2 and KITTI dataset demonstrate that our method outperforms the previous state-of-the-art method by up to 10.6% in terms of MARE.
arXiv Detail & Related papers (2023-11-02T06:56:50Z) - Vox-E: Text-guided Voxel Editing of 3D Objects [14.88446525549421]
Large scale text-guided diffusion models have garnered significant attention due to their ability to synthesize diverse images.
We present a technique that harnesses the power of latent diffusion models for editing existing 3D objects.
arXiv Detail & Related papers (2023-03-21T17:36:36Z) - Unleashing Text-to-Image Diffusion Models for Visual Perception [84.41514649568094]
VPD (Visual Perception with a pre-trained diffusion model) is a new framework that exploits the semantic information of a pre-trained text-to-image diffusion model in visual perception tasks.
We show that VPD can be faster adapted to downstream visual perception tasks using the proposed VPD.
arXiv Detail & Related papers (2023-03-03T18:59:47Z) - LiP-Flow: Learning Inference-time Priors for Codec Avatars via
Normalizing Flows in Latent Space [90.74976459491303]
We introduce a prior model that is conditioned on the runtime inputs and tie this prior space to the 3D face model via a normalizing flow in the latent space.
A normalizing flow bridges the two representation spaces and transforms latent samples from one domain to another, allowing us to define a latent likelihood objective.
We show that our approach leads to an expressive and effective prior, capturing facial dynamics and subtle expressions better.
arXiv Detail & Related papers (2022-03-15T13:22:57Z) - Behind the Scene: Revealing the Secrets of Pre-trained
Vision-and-Language Models [65.19308052012858]
Recent Transformer-based large-scale pre-trained models have revolutionized vision-and-language (V+L) research.
We present VALUE, a set of meticulously designed probing tasks to decipher the inner workings of multimodal pre-training.
Key observations: Pre-trained models exhibit a propensity for attending over text rather than images during inference.
arXiv Detail & Related papers (2020-05-15T01:06:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.