SHuBERT: Self-Supervised Sign Language Representation Learning via Multi-Stream Cluster Prediction
- URL: http://arxiv.org/abs/2411.16765v3
- Date: Wed, 02 Jul 2025 23:43:36 GMT
- Title: SHuBERT: Self-Supervised Sign Language Representation Learning via Multi-Stream Cluster Prediction
- Authors: Shester Gueuwou, Xiaodan Du, Greg Shakhnarovich, Karen Livescu, Alexander H. Liu,
- Abstract summary: SHuBERT (Sign Hidden-Unit BERT) is a self-supervised contextual representation model learned from 1,000 hours of American Sign Language video.<n>SHuBERT adapts masked token prediction objectives to multi-stream visual sign language input, learning to predict multiple targets corresponding to clustered hand, face, and body pose streams.<n>SHuBERT achieves state-of-the-art performance across multiple tasks including sign language translation, isolated sign language recognition, and fingerspelling detection.
- Score: 65.1590372072555
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sign language processing has traditionally relied on task-specific models, limiting the potential for transfer learning across tasks. Pre-training methods for sign language have typically focused on either supervised pre-training, which cannot take advantage of unlabeled data, or context-independent (frame or video segment) representations, which ignore the effects of relationships across time in sign language. We introduce SHuBERT (Sign Hidden-Unit BERT), a self-supervised contextual representation model learned from approximately 1,000 hours of American Sign Language video. SHuBERT adapts masked token prediction objectives to multi-stream visual sign language input, learning to predict multiple targets corresponding to clustered hand, face, and body pose streams. SHuBERT achieves state-of-the-art performance across multiple tasks including sign language translation, isolated sign language recognition, and fingerspelling detection.
Related papers
- Representing Signs as Signs: One-Shot ISLR to Facilitate Functional Sign Language Technologies [6.403291706982091]
Isolated Sign Language Recognition is crucial for scalable language technology.
We propose a one-shot learning approach that generalises across languages and evolving vocabularies.
We achieve state-of-the-art results, including 50.8% one-shot MRR on a large dictionary containing 10,235 unique signs from a different language.
arXiv Detail & Related papers (2025-02-27T15:07:51Z) - Signs as Tokens: A Retrieval-Enhanced Multilingual Sign Language Generator [55.94334001112357]
We introduce a multilingual sign language model, Signs as Tokens (SOKE), which can generate 3D sign avatars autoregressively from text inputs.<n>We propose a retrieval-enhanced SLG approach, which incorporates external sign dictionaries to provide accurate word-level signs.
arXiv Detail & Related papers (2024-11-26T18:28:09Z) - Scaling up Multimodal Pre-training for Sign Language Understanding [96.17753464544604]
Sign language serves as the primary meaning of communication for the deaf-mute community.
To facilitate communication between the deaf-mute and hearing people, a series of sign language understanding (SLU) tasks have been studied.
These tasks investigate sign language topics from diverse perspectives and raise challenges in learning effective representation of sign language videos.
arXiv Detail & Related papers (2024-08-16T06:04:25Z) - SignCLIP: Connecting Text and Sign Language by Contrastive Learning [39.72545568965546]
SignCLIP is an efficient method of learning useful visual representations for sign language processing from large-scale, multilingual video-text pairs.
We pretrain SignCLIP on Spreadthesign, a prominent sign language dictionary consisting of 500 thousand video clips in up to 44 sign languages.
We analyze the latent space formed by the spoken language text and sign language poses, which provides additional linguistic insights.
arXiv Detail & Related papers (2024-07-01T13:17:35Z) - SignMusketeers: An Efficient Multi-Stream Approach for Sign Language Translation at Scale [22.49602248323602]
A persistent challenge in sign language video processing is how we learn representations of sign language.<n>Our proposed method focuses on just the most relevant parts in a signing video: the face, hands and body pose of the signer.<n>Our approach is based on learning from individual frames (rather than video sequences) and is therefore much more efficient than prior work on sign language pre-training.
arXiv Detail & Related papers (2024-06-11T03:00:41Z) - Improving Continuous Sign Language Recognition with Cross-Lingual Signs [29.077175863743484]
We study the feasibility of utilizing multilingual sign language corpora to facilitate continuous sign language recognition.
We first build two sign language dictionaries containing isolated signs that appear in two datasets.
Then we identify the sign-to-sign mappings between two sign languages via a well-optimized isolated sign language recognition model.
arXiv Detail & Related papers (2023-08-21T15:58:47Z) - SignBERT+: Hand-model-aware Self-supervised Pre-training for Sign
Language Understanding [132.78015553111234]
Hand gesture serves as a crucial role during the expression of sign language.
Current deep learning based methods for sign language understanding (SLU) are prone to over-fitting due to insufficient sign data resource.
We propose the first self-supervised pre-trainable SignBERT+ framework with model-aware hand prior incorporated.
arXiv Detail & Related papers (2023-05-08T17:16:38Z) - Learning from What is Already Out There: Few-shot Sign Language
Recognition with Online Dictionaries [0.0]
We open-source the UWB-SL-Wild few-shot dataset, the first of its kind training resource consisting of dictionary-scraped videos.
We introduce a novel approach to training sign language recognition models in a few-shot scenario, resulting in state-of-the-art results.
arXiv Detail & Related papers (2023-01-10T03:21:01Z) - SimulSLT: End-to-End Simultaneous Sign Language Translation [55.54237194555432]
Existing sign language translation methods need to read all the videos before starting the translation.
We propose SimulSLT, the first end-to-end simultaneous sign language translation model.
SimulSLT achieves BLEU scores that exceed the latest end-to-end non-simultaneous sign language translation model.
arXiv Detail & Related papers (2021-12-08T11:04:52Z) - SignBERT: Pre-Training of Hand-Model-Aware Representation for Sign
Language Recognition [94.30084702921529]
Hand gesture serves as a critical role in sign language.
Current deep-learning-based sign language recognition methods may suffer insufficient interpretability.
We introduce the first self-supervised pre-trainable SignBERT with incorporated hand prior for SLR.
arXiv Detail & Related papers (2021-10-11T16:18:09Z) - W2v-BERT: Combining Contrastive Learning and Masked Language Modeling
for Self-Supervised Speech Pre-Training [49.47516627019855]
w2v-BERT is a framework that combines contrastive learning and pre-supervised speech learning.
Our experiments show that w2v-BERT achieves competitive results compared to current state-of-the-art pre-trained models.
arXiv Detail & Related papers (2021-08-07T06:29:36Z) - Explicit Alignment Objectives for Multilingual Bidirectional Encoders [111.65322283420805]
We present a new method for learning multilingual encoders, AMBER (Aligned Multilingual Bi-directional EncodeR)
AMBER is trained on additional parallel data using two explicit alignment objectives that align the multilingual representations at different granularities.
Experimental results show that AMBER obtains gains of up to 1.1 average F1 score on sequence tagging and up to 27.3 average accuracy on retrieval over the XLMR-large model.
arXiv Detail & Related papers (2020-10-15T18:34:13Z) - Watch, read and lookup: learning to spot signs from multiple supervisors [99.50956498009094]
Given a video of an isolated sign, our task is to identify whether and where it has been signed in a continuous, co-articulated sign language video.
We train a model using multiple types of available supervision by: (1) watching existing sparsely labelled footage; (2) reading associated subtitles which provide additional weak-supervision; and (3) looking up words in visual sign language dictionaries.
These three tasks are integrated into a unified learning framework using the principles of Noise Contrastive Estimation and Multiple Instance Learning.
arXiv Detail & Related papers (2020-10-08T14:12:56Z) - BSL-1K: Scaling up co-articulated sign language recognition using
mouthing cues [106.21067543021887]
We show how to use mouthing cues from signers to obtain high-quality annotations from video data.
The BSL-1K dataset is a collection of British Sign Language (BSL) signs of unprecedented scale.
arXiv Detail & Related papers (2020-07-23T16:59:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.