Understanding GEMM Performance and Energy on NVIDIA Ada Lovelace: A Machine Learning-Based Analytical Approach
- URL: http://arxiv.org/abs/2411.16954v1
- Date: Mon, 25 Nov 2024 21:47:23 GMT
- Title: Understanding GEMM Performance and Energy on NVIDIA Ada Lovelace: A Machine Learning-Based Analytical Approach
- Authors: Xiaoteng, Liu, Pavly Halim,
- Abstract summary: This study employs two approaches: a custom-implemented tiled matrix multiplication kernel and NVIDIA's CUTLASS library.
We developed a Random Forest-based prediction model with multi-output regression capability.
Our framework achieved exceptional accuracy with an R2 score of 0.98 for runtime prediction and 0.78 for power prediction.
- Score: 0.8192907805418583
- License:
- Abstract: Analytical framework for predicting General Matrix Multiplication (GEMM) performance on modern GPUs, focusing on runtime, power consumption, and energy efficiency. Our study employs two approaches: a custom-implemented tiled matrix multiplication kernel for fundamental analysis, and NVIDIA's CUTLASS library for comprehensive performance data collection across advanced configurations. Using the NVIDIA RTX 4070 as our experimental platform, we developed a Random Forest-based prediction model with multi-output regression capability. Through analysis of both naive tiled matrix multiplication with varying tile sizes (1 to 32) and 16,128 CUTLASS GEMM operations across diverse configurations, we identified critical performance patterns related to matrix dimensions, thread block configurations, and memory access patterns. Our framework achieved exceptional accuracy with an R^2 score of 0.98 for runtime prediction (mean error 15.57%) and 0.78 for power prediction (median error 5.42%). The system successfully predicts performance across matrix sizes, demonstrating robust scaling behavior. Our results show that optimal tile size selection can improve performance by up to 3.2x while reducing power consumption by 22% compared to baseline configurations. Analysis of shared memory utilization and SM occupancy reveals that tile sizes of 16x16 achieve the best balance between parallelism and resource usage. The implementation of our framework, including prediction models and analysis tools, is available as an open-source project at GPPerf [https://github.com/pavlyhalim/GPPerf].
Related papers
- Breaking the Memory Barrier: Near Infinite Batch Size Scaling for Contrastive Loss [59.835032408496545]
We propose a tile-based strategy that partitions the contrastive loss calculation into arbitrary small blocks.
We also introduce a multi-level tiling strategy to leverage the hierarchical structure of distributed systems.
Compared to SOTA memory-efficient solutions, it achieves a two-order-of-magnitude reduction in memory while maintaining comparable speed.
arXiv Detail & Related papers (2024-10-22T17:59:30Z) - Implementation and Analysis of GPU Algorithms for Vecchia Approximation [0.8057006406834466]
Vecchia Approximation is widely used to reduce the computational complexity and can be calculated with embarrassingly parallel algorithms.
While multi-core software has been developed for Vecchia Approximation, software designed to run on graphics processing units ( GPU) is lacking.
We show that our new method outperforms the other two and then present it in the GpGpU R package.
arXiv Detail & Related papers (2024-07-03T01:24:44Z) - Compute Better Spent: Replacing Dense Layers with Structured Matrices [77.61728033234233]
We identify more efficient alternatives to dense matrices, as exemplified by the success of convolutional networks in the image domain.
We show that different structures often require drastically different initialization scales and learning rates, which are crucial to performance.
We propose a novel matrix family containing Monarch matrices, the Block-Train, which we show performs better than dense for the same compute on multiple tasks.
arXiv Detail & Related papers (2024-06-10T13:25:43Z) - Fine-Tuning Language Models with Just Forward Passes [92.04219196752007]
Fine-tuning language models (LMs) has yielded success on diverse downstream tasks, but as LMs grow in size, backpropagation requires a large amount of memory.
We propose a memory-efficient zerothorder (MeZO) to operate in-place, thereby fine-tuning LMs with the same memory footprint as inference.
arXiv Detail & Related papers (2023-05-27T02:28:10Z) - An Empirical Study of Multimodal Model Merging [148.48412442848795]
Model merging is a technique that fuses multiple models trained on different tasks to generate a multi-task solution.
We conduct our study for a novel goal where we can merge vision, language, and cross-modal transformers of a modality-specific architecture.
We propose two metrics that assess the distance between weights to be merged and can serve as an indicator of the merging outcomes.
arXiv Detail & Related papers (2023-04-28T15:43:21Z) - ParaGraph: Weighted Graph Representation for Performance Optimization of
HPC Kernels [1.304892050913381]
We introduce a new graph-based program representation for parallel applications that extends the Abstract Syntax Tree.
We evaluate our proposed representation by training a Graph Neural Network (GNN) to predict the runtime of an OpenMP code region.
Results show that our approach is indeed effective and has normalized RMSE as low as 0.004 to at most 0.01 in its runtime predictions.
arXiv Detail & Related papers (2023-04-07T05:52:59Z) - BB-ML: Basic Block Performance Prediction using Machine Learning
Techniques [0.6020800302423842]
We propose to use Machine Learning (ML) techniques for performance prediction at a much finer granularity, namely at the Basic Block (BB) level.
We extrapolate the basic block execution counts of GPU applications and use them for predicting the performance for large input sizes from the counts of smaller input sizes.
We achieve an accuracy 93.5% in extrapolating the basic block counts for large input sets when trained on smaller input sets.
arXiv Detail & Related papers (2022-02-16T00:19:15Z) - Why Approximate Matrix Square Root Outperforms Accurate SVD in Global
Covariance Pooling? [59.820507600960745]
We propose a new GCP meta-layer that uses SVD in the forward pass, and Pad'e Approximants in the backward propagation to compute the gradients.
The proposed meta-layer has been integrated into different CNN models and achieves state-of-the-art performances on both large-scale and fine-grained datasets.
arXiv Detail & Related papers (2021-05-06T08:03:45Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
Variational autoencoders (VAE) are a powerful and widely-used class of generative models.
We introduce a new constrained objective based on the Cauchy-Schwarz divergence, which can be computed analytically for GMMs.
Our objective improves upon variational auto-encoding models in density estimation, unsupervised clustering, semi-supervised learning, and face analysis.
arXiv Detail & Related papers (2021-01-06T17:36:26Z) - Optimizing Streaming Parallelism on Heterogeneous Many-Core
Architectures: A Machine Learning Based Approach [16.702537371391053]
This article presents an automatic approach to derive a good solution for hardware resource partition and task granularity for task-based parallel applications on heterogeneous many-core architectures.
Our approach employs a performance model to estimate the resulting performance of the target application under a given resource partition and task granularity configuration.
Compared to the single-stream version, our approach achieves a 1.6x and 1.1x speedup on the XeonPhi and the GPU platform, respectively.
arXiv Detail & Related papers (2020-03-05T21:18:21Z) - A Simple Model for Portable and Fast Prediction of Execution Time and
Power Consumption of GPU Kernels [2.9853894456071077]
This model is built based on random forests using 189 individual compute kernels from benchmarks such as Parboil, Rodinia, Polybench-GPU and SHOC.
Evaluation of the model performance using cross-validation yields a median Mean Average Percentage Error (MAPE) of 8.86-52.00% and 1.84-2.94%, for time respectively power prediction across five different GPUs, while latency for a single prediction varies between 15 and 108 milliseconds.
arXiv Detail & Related papers (2020-01-20T13:40:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.