Autoencoder Enhanced Realised GARCH on Volatility Forecasting
- URL: http://arxiv.org/abs/2411.17136v1
- Date: Tue, 26 Nov 2024 06:05:44 GMT
- Title: Autoencoder Enhanced Realised GARCH on Volatility Forecasting
- Authors: Qianli Zhao, Chao Wang, Richard Gerlach, Giuseppe Storti, Lingxiang Zhang,
- Abstract summary: This thesis aims to synthesise the impact of various realised volatility measures on volatility forecasting.
We propose an extension of the Realised GARCH model that incorporates an autoencoder-generated synthetic realised measure.
- Score: 2.1902930328664914
- License:
- Abstract: Realised volatility has become increasingly prominent in volatility forecasting due to its ability to capture intraday price fluctuations. With a growing variety of realised volatility estimators, each with unique advantages and limitations, selecting an optimal estimator may introduce challenges. In this thesis, aiming to synthesise the impact of various realised volatility measures on volatility forecasting, we propose an extension of the Realised GARCH model that incorporates an autoencoder-generated synthetic realised measure, combining the information from multiple realised measures in a nonlinear manner. Our proposed model extends existing linear methods, such as Principal Component Analysis and Independent Component Analysis, to reduce the dimensionality of realised measures. The empirical evaluation, conducted across four major stock markets from January 2000 to June 2022 and including the period of COVID-19, demonstrates both the feasibility of applying an autoencoder to synthesise volatility measures and the superior effectiveness of the proposed model in one-step-ahead rolling volatility forecasting. The model exhibits enhanced flexibility in parameter estimations across each rolling window, outperforming traditional linear approaches. These findings indicate that nonlinear dimension reduction offers further adaptability and flexibility in improving the synthetic realised measure, with promising implications for future volatility forecasting applications.
Related papers
- Future-Guided Learning: A Predictive Approach To Enhance Time-Series Forecasting [4.866362841501992]
We introduce Future-Guided Learning, an approach that enhances time-series event forecasting.
Our approach involves two models: a detection model that analyzes future data to identify critical events and a forecasting model that predicts these events based on present data.
When discrepancies arise between the forecasting and detection models, the forecasting model undergoes more substantial updates.
arXiv Detail & Related papers (2024-10-19T21:22:55Z) - A Dynamic Approach to Stock Price Prediction: Comparing RNN and Mixture of Experts Models Across Different Volatility Profiles [0.0]
The MoE framework combines an RNN for volatile stocks and a linear model for stable stocks, dynamically adjusting the weight of each model through a gating network.
Results indicate that the MoE approach significantly improves predictive accuracy across different volatility profiles.
The MoE model's adaptability allows it to outperform each individual model, reducing errors such as Mean Squared Error (MSE) and Mean Absolute Error (MAE)
arXiv Detail & Related papers (2024-10-04T14:36:21Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model [50.06663781566795]
We consider a dynamic model with the consumers' preferences as well as price sensitivity varying over time.
We measure the performance of a dynamic pricing policy via regret, which is the expected revenue loss compared to a clairvoyant that knows the sequence of model parameters in advance.
Our regret analysis results not only demonstrate optimality of the proposed policy but also show that for policy planning it is essential to incorporate available structural information.
arXiv Detail & Related papers (2023-03-28T00:23:23Z) - Deep Learning Enhanced Realized GARCH [6.211385208178938]
We propose a new approach to volatility modeling by combining deep learning (LSTM) and realized volatility measures.
This LSTM-enhanced realized GARCH framework incorporates and distills modeling advances from financial econometrics, high frequency trading data and deep learning.
arXiv Detail & Related papers (2023-02-16T00:20:43Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
We revisit a model for time-varying linear regression that assumes the unknown parameters evolve according to a linear dynamical system.
Counterintuitively, we show that when the underlying dynamics are stable the parameters of this model can be estimated from data by combining just two ordinary least squares estimates.
arXiv Detail & Related papers (2021-12-29T23:37:06Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
Deep learning models have led to significant performance improvements in many problems coming from different domains, including prediction problems of financial time-series data.
The Temporal Attention-Augmented Bilinear network was recently proposed as an efficient and high-performing model for Limit Order Book time-series forecasting.
In this paper, we propose a low-rank tensor approximation of the model to further reduce the number of trainable parameters and increase its speed.
arXiv Detail & Related papers (2021-07-05T10:15:23Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - A generative adversarial network approach to calibration of local
stochastic volatility models [2.1485350418225244]
We propose a fully data-driven approach to calibrate local volatility (LSV) models.
We parametrize the leverage function by a family of feed-forward neural networks and learn their parameters directly from the available market option prices.
This should be seen in the context of neural SDEs and (causal) generative adversarial networks.
arXiv Detail & Related papers (2020-05-05T21:26:20Z) - Ensemble Forecasting for Intraday Electricity Prices: Simulating
Trajectories [0.0]
Recent studies have shown that the hourly German Intraday Continuous Market is weak-form efficient.
A probabilistic forecasting of the hourly intraday electricity prices is performed by simulating trajectories in every trading window.
The study aims to forecast the price distribution in the German Intraday Continuous Market in the last 3 hours of trading, but the approach allows for application to other continuous markets, especially in Europe.
arXiv Detail & Related papers (2020-05-04T10:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.