Distilling Spectral Graph for Object-Context Aware Open-Vocabulary Semantic Segmentation
- URL: http://arxiv.org/abs/2411.17150v1
- Date: Tue, 26 Nov 2024 06:34:48 GMT
- Title: Distilling Spectral Graph for Object-Context Aware Open-Vocabulary Semantic Segmentation
- Authors: Chanyoung Kim, Dayun Ju, Woojung Han, Ming-Hsuan Yang, Seong Jae Hwang,
- Abstract summary: We introduce a novel approach that incorporates object-level contextual knowledge within images.
Our proposed approach achieves state-of-the-art performance with strong generalizability across diverse datasets.
- Score: 47.047267066525265
- License:
- Abstract: Open-Vocabulary Semantic Segmentation (OVSS) has advanced with recent vision-language models (VLMs), enabling segmentation beyond predefined categories through various learning schemes. Notably, training-free methods offer scalable, easily deployable solutions for handling unseen data, a key goal of OVSS. Yet, a critical issue persists: lack of object-level context consideration when segmenting complex objects in the challenging environment of OVSS based on arbitrary query prompts. This oversight limits models' ability to group semantically consistent elements within object and map them precisely to user-defined arbitrary classes. In this work, we introduce a novel approach that overcomes this limitation by incorporating object-level contextual knowledge within images. Specifically, our model enhances intra-object consistency by distilling spectral-driven features from vision foundation models into the attention mechanism of the visual encoder, enabling semantically coherent components to form a single object mask. Additionally, we refine the text embeddings with zero-shot object presence likelihood to ensure accurate alignment with the specific objects represented in the images. By leveraging object-level contextual knowledge, our proposed approach achieves state-of-the-art performance with strong generalizability across diverse datasets.
Related papers
- Bootstrapping Top-down Information for Self-modulating Slot Attention [29.82550058869251]
We propose a novel OCL framework incorporating a top-down pathway.
This pathway bootstraps the semantics of individual objects and then modulates the model to prioritize features relevant to these semantics.
Our framework achieves state-of-the-art performance across multiple synthetic and real-world object-discovery benchmarks.
arXiv Detail & Related papers (2024-11-04T05:00:49Z) - OLIVE: Object Level In-Context Visual Embeddings [8.168219870640318]
We propose a novel method to prompt large language models with in-context visual object vectors.
This eliminates the necessity of fusing a lengthy array of image patch features and significantly speeds up training.
Our experiments reveal that our method achieves competitive referring object classification and captioning performance.
arXiv Detail & Related papers (2024-06-02T21:36:31Z) - EAGLE: Eigen Aggregation Learning for Object-Centric Unsupervised Semantic Segmentation [5.476136494434766]
We introduce EiCue, a technique providing semantic and structural cues through an eigenbasis derived from semantic similarity matrix.
We guide our model to learn object-level representations with intra- and inter-image object-feature consistency.
Experiments on COCO-Stuff, Cityscapes, and Potsdam-3 datasets demonstrate the state-of-the-art USS results.
arXiv Detail & Related papers (2024-03-03T11:24:16Z) - Weakly Supervised Open-Vocabulary Object Detection [31.605276665964787]
We propose a novel weakly supervised open-vocabulary object detection framework, namely WSOVOD, to extend traditional WSOD.
To achieve this, we explore three vital strategies, including dataset-level feature adaptation, image-level salient object localization, and region-level vision-language alignment.
arXiv Detail & Related papers (2023-12-19T18:59:53Z) - Open-Vocabulary Camouflaged Object Segmentation [66.94945066779988]
We introduce a new task, open-vocabulary camouflaged object segmentation (OVCOS)
We construct a large-scale complex scene dataset (textbfOVCamo) containing 11,483 hand-selected images with fine annotations and corresponding object classes.
By integrating the guidance of class semantic knowledge and the supplement of visual structure cues from the edge and depth information, the proposed method can efficiently capture camouflaged objects.
arXiv Detail & Related papers (2023-11-19T06:00:39Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Self-Supervised Visual Representation Learning with Semantic Grouping [50.14703605659837]
We tackle the problem of learning visual representations from unlabeled scene-centric data.
We propose contrastive learning from data-driven semantic slots, namely SlotCon, for joint semantic grouping and representation learning.
arXiv Detail & Related papers (2022-05-30T17:50:59Z) - Improving Semantic Segmentation via Decoupled Body and Edge Supervision [89.57847958016981]
Existing semantic segmentation approaches either aim to improve the object's inner consistency by modeling the global context, or refine objects detail along their boundaries by multi-scale feature fusion.
In this paper, a new paradigm for semantic segmentation is proposed.
Our insight is that appealing performance of semantic segmentation requires textitexplicitly modeling the object textitbody and textitedge, which correspond to the high and low frequency of the image.
We show that the proposed framework with various baselines or backbone networks leads to better object inner consistency and object boundaries.
arXiv Detail & Related papers (2020-07-20T12:11:22Z) - Look-into-Object: Self-supervised Structure Modeling for Object
Recognition [71.68524003173219]
We propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions.
We show the recognition backbone can be substantially enhanced for more robust representation learning.
Our approach achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft)
arXiv Detail & Related papers (2020-03-31T12:22:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.