X-MeshGraphNet: Scalable Multi-Scale Graph Neural Networks for Physics Simulation
- URL: http://arxiv.org/abs/2411.17164v1
- Date: Tue, 26 Nov 2024 07:10:05 GMT
- Title: X-MeshGraphNet: Scalable Multi-Scale Graph Neural Networks for Physics Simulation
- Authors: Mohammad Amin Nabian,
- Abstract summary: We introduce X-MeshGraphNet, a scalable, multi-scale extension of MeshGraphNet.
X-MeshGraphNet overcomes the scalability bottleneck by partitioning large graphs and halo regions.
Our experiments demonstrate that X-MeshGraphNet maintains the predictive accuracy of full-graph GNNs.
- Score: 0.0
- License:
- Abstract: Graph Neural Networks (GNNs) have gained significant traction for simulating complex physical systems, with models like MeshGraphNet demonstrating strong performance on unstructured simulation meshes. However, these models face several limitations, including scalability issues, requirement for meshing at inference, and challenges in handling long-range interactions. In this work, we introduce X-MeshGraphNet, a scalable, multi-scale extension of MeshGraphNet designed to address these challenges. X-MeshGraphNet overcomes the scalability bottleneck by partitioning large graphs and incorporating halo regions that enable seamless message passing across partitions. This, combined with gradient aggregation, ensures that training across partitions is equivalent to processing the entire graph at once. To remove the dependency on simulation meshes, X-MeshGraphNet constructs custom graphs directly from CAD files by generating uniform point clouds on the surface or volume of the object and connecting k-nearest neighbors. Additionally, our model builds multi-scale graphs by iteratively combining coarse and fine-resolution point clouds, where each level refines the previous, allowing for efficient long-range interactions. Our experiments demonstrate that X-MeshGraphNet maintains the predictive accuracy of full-graph GNNs while significantly improving scalability and flexibility. This approach eliminates the need for time-consuming mesh generation at inference, offering a practical solution for real-time simulation across a wide range of applications. The code for reproducing the results presented in this paper is available through NVIDIA Modulus: github.com/NVIDIA/modulus/tree/main/examples/cfd/xaeronet.
Related papers
- Input Snapshots Fusion for Scalable Discrete Dynamic Graph Nerual Networks [27.616083395612595]
We introduce an Input bf Snapshots bf Fusion based bf Dynamic bf Graph Neural Network (SFDyG)
By eliminating the partitioning of snapshots within the input window, we obtain a multi-graph (more than one edge between two nodes)
We propose a scalable three-step mini-batch training method and demonstrate its equivalence to full-batch training counterpart.
arXiv Detail & Related papers (2024-05-11T10:05:55Z) - MGNet: Learning Correspondences via Multiple Graphs [78.0117352211091]
Learning correspondences aims to find correct correspondences from the initial correspondence set with an uneven correspondence distribution and a low inlier rate.
Recent advances usually use graph neural networks (GNNs) to build a single type of graph or stack local graphs into the global one to complete the task.
We propose MGNet to effectively combine multiple complementary graphs.
arXiv Detail & Related papers (2024-01-10T07:58:44Z) - Communication-Free Distributed GNN Training with Vertex Cut [63.22674903170953]
CoFree-GNN is a novel distributed GNN training framework that significantly speeds up the training process by implementing communication-free training.
We demonstrate that CoFree-GNN speeds up the GNN training process by up to 10 times over the existing state-of-the-art GNN training approaches.
arXiv Detail & Related papers (2023-08-06T21:04:58Z) - MultiScale MeshGraphNets [65.26373813797409]
We propose two complementary approaches to improve the framework from MeshGraphNets.
First, we demonstrate that it is possible to learn accurate surrogate dynamics of a high-resolution system on a much coarser mesh.
Second, we introduce a hierarchical approach (MultiScale MeshGraphNets) which passes messages on two different resolutions.
arXiv Detail & Related papers (2022-10-02T20:16:20Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - GNNAutoScale: Scalable and Expressive Graph Neural Networks via
Historical Embeddings [51.82434518719011]
GNNAutoScale (GAS) is a framework for scaling arbitrary message-passing GNNs to large graphs.
Gas prunes entire sub-trees of the computation graph by utilizing historical embeddings from prior training iterations.
Gas reaches state-of-the-art performance on large-scale graphs.
arXiv Detail & Related papers (2021-06-10T09:26:56Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
Graph Neural Networks (GNNs) achieve significant performance for various learning tasks on geometric data.
In this paper, we propose a unified framework satisfied by most existing GNN explainers.
We introduce GraphSVX, a post hoc local model-agnostic explanation method specifically designed for GNNs.
arXiv Detail & Related papers (2021-04-18T10:40:37Z) - FeatGraph: A Flexible and Efficient Backend for Graph Neural Network
Systems [23.258185277825888]
FeatGraph provides a flexible programming interface to express diverse GNN models.
FeatGraph speeds up end-to-end GNN training and inference by up to 32x on CPU and 7x on GPU.
arXiv Detail & Related papers (2020-08-26T03:17:05Z) - MathNet: Haar-Like Wavelet Multiresolution-Analysis for Graph
Representation and Learning [31.42901131602713]
We propose a framework for graph neural networks with multiresolution Haar-like wavelets, or MathNet, with interrelated convolution and pooling strategies.
The proposed MathNet outperforms various existing GNN models, especially on big data sets.
arXiv Detail & Related papers (2020-07-22T05:00:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.