X-MeshGraphNet: Scalable Multi-Scale Graph Neural Networks for Physics Simulation
- URL: http://arxiv.org/abs/2411.17164v2
- Date: Fri, 20 Dec 2024 03:48:03 GMT
- Title: X-MeshGraphNet: Scalable Multi-Scale Graph Neural Networks for Physics Simulation
- Authors: Mohammad Amin Nabian, Chang Liu, Rishikesh Ranade, Sanjay Choudhry,
- Abstract summary: We introduce X-MeshGraphNet, a scalable, multi-scale extension of MeshGraphNet.
X-MeshGraphNet overcomes the scalability bottleneck by incorporating large graphs and halo regions.
Our experiments demonstrate that X-MeshGraphNet maintains the predictive accuracy of full-graph GNNs.
- Score: 3.8363709845608365
- License:
- Abstract: Graph Neural Networks (GNNs) have gained significant traction for simulating complex physical systems, with models like MeshGraphNet demonstrating strong performance on unstructured simulation meshes. However, these models face several limitations, including scalability issues, requirement for meshing at inference, and challenges in handling long-range interactions. In this work, we introduce X-MeshGraphNet, a scalable, multi-scale extension of MeshGraphNet designed to address these challenges. X-MeshGraphNet overcomes the scalability bottleneck by partitioning large graphs and incorporating halo regions that enable seamless message passing across partitions. This, combined with gradient aggregation, ensures that training across partitions is equivalent to processing the entire graph at once. To remove the dependency on simulation meshes, X-MeshGraphNet constructs custom graphs directly from tessellated geometry files (e.g., STLs) by generating point clouds on the surface or volume of the object and connecting k-nearest neighbors. Additionally, our model builds multi-scale graphs by iteratively combining coarse and fine-resolution point clouds, where each level refines the previous, allowing for efficient long-range interactions. Our experiments demonstrate that X-MeshGraphNet maintains the predictive accuracy of full-graph GNNs while significantly improving scalability and flexibility. This approach eliminates the need for time-consuming mesh generation at inference, offering a practical solution for real-time simulation across a wide range of applications. The code for reproducing the results presented in this paper is available through NVIDIA Modulus.
Related papers
- DeltaGNN: Graph Neural Network with Information Flow Control [5.563171090433323]
Graph Neural Networks (GNNs) are designed to process graph-structured data through neighborhood aggregations in the message passing process.
Message-passing enables GNNs to understand short-range spatial interactions, but also causes them to suffer from over-smoothing and over-squashing.
We propose a mechanism called emph information flow control to address over-smoothing and over-squashing with linear computational overhead.
We benchmark our model across 10 real-world datasets, including graphs with varying sizes, topologies, densities, and homophilic ratios, showing superior performance
arXiv Detail & Related papers (2025-01-10T14:34:20Z) - Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
We propose a unified evaluation framework for graph-level Graph Neural Networks (GNNs)
This framework provides a standardized setting to evaluate GNNs across diverse datasets.
We also propose a novel GNN model with enhanced expressivity and generalization capabilities.
arXiv Detail & Related papers (2025-01-01T08:48:53Z) - Communication-Free Distributed GNN Training with Vertex Cut [63.22674903170953]
CoFree-GNN is a novel distributed GNN training framework that significantly speeds up the training process by implementing communication-free training.
We demonstrate that CoFree-GNN speeds up the GNN training process by up to 10 times over the existing state-of-the-art GNN training approaches.
arXiv Detail & Related papers (2023-08-06T21:04:58Z) - MultiScale MeshGraphNets [65.26373813797409]
We propose two complementary approaches to improve the framework from MeshGraphNets.
First, we demonstrate that it is possible to learn accurate surrogate dynamics of a high-resolution system on a much coarser mesh.
Second, we introduce a hierarchical approach (MultiScale MeshGraphNets) which passes messages on two different resolutions.
arXiv Detail & Related papers (2022-10-02T20:16:20Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - Instant Graph Neural Networks for Dynamic Graphs [18.916632816065935]
We propose Instant Graph Neural Network (InstantGNN), an incremental approach for the graph representation matrix of dynamic graphs.
Our method avoids time-consuming, repetitive computations and allows instant updates on the representation and instant predictions.
Our model achieves state-of-the-art accuracy while having orders-of-magnitude higher efficiency than existing methods.
arXiv Detail & Related papers (2022-06-03T03:27:42Z) - GNNAutoScale: Scalable and Expressive Graph Neural Networks via
Historical Embeddings [51.82434518719011]
GNNAutoScale (GAS) is a framework for scaling arbitrary message-passing GNNs to large graphs.
Gas prunes entire sub-trees of the computation graph by utilizing historical embeddings from prior training iterations.
Gas reaches state-of-the-art performance on large-scale graphs.
arXiv Detail & Related papers (2021-06-10T09:26:56Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
Graph Neural Networks (GNNs) achieve significant performance for various learning tasks on geometric data.
In this paper, we propose a unified framework satisfied by most existing GNN explainers.
We introduce GraphSVX, a post hoc local model-agnostic explanation method specifically designed for GNNs.
arXiv Detail & Related papers (2021-04-18T10:40:37Z) - MathNet: Haar-Like Wavelet Multiresolution-Analysis for Graph
Representation and Learning [31.42901131602713]
We propose a framework for graph neural networks with multiresolution Haar-like wavelets, or MathNet, with interrelated convolution and pooling strategies.
The proposed MathNet outperforms various existing GNN models, especially on big data sets.
arXiv Detail & Related papers (2020-07-22T05:00:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.