PhysMotion: Physics-Grounded Dynamics From a Single Image
- URL: http://arxiv.org/abs/2411.17189v1
- Date: Tue, 26 Nov 2024 07:59:11 GMT
- Title: PhysMotion: Physics-Grounded Dynamics From a Single Image
- Authors: Xiyang Tan, Ying Jiang, Xuan Li, Zeshun Zong, Tianyi Xie, Yin Yang, Chenfanfu Jiang,
- Abstract summary: We introduce PhysMotion, a novel framework that leverages principled physics-based simulations to guide intermediate 3D representations generated from a single image.
Our approach addresses the limitations of traditional data-driven generative models and result in more consistent physically plausible motions.
- Score: 24.096925413047217
- License:
- Abstract: We introduce PhysMotion, a novel framework that leverages principled physics-based simulations to guide intermediate 3D representations generated from a single image and input conditions (e.g., applied force and torque), producing high-quality, physically plausible video generation. By utilizing continuum mechanics-based simulations as a prior knowledge, our approach addresses the limitations of traditional data-driven generative models and result in more consistent physically plausible motions. Our framework begins by reconstructing a feed-forward 3D Gaussian from a single image through geometry optimization. This representation is then time-stepped using a differentiable Material Point Method (MPM) with continuum mechanics-based elastoplasticity models, which provides a strong foundation for realistic dynamics, albeit at a coarse level of detail. To enhance the geometry, appearance and ensure spatiotemporal consistency, we refine the initial simulation using a text-to-image (T2I) diffusion model with cross-frame attention, resulting in a physically plausible video that retains intricate details comparable to the input image. We conduct comprehensive qualitative and quantitative evaluations to validate the efficacy of our method. Our project page is available at: \url{https://supertan0204.github.io/physmotion_website/}.
Related papers
- Unleashing the Potential of Multi-modal Foundation Models and Video Diffusion for 4D Dynamic Physical Scene Simulation [9.306758077479472]
We introduce a novel approach that leverages multi-modal foundation models and video diffusion to achieve enhanced 4D dynamic scene simulation.
This integrated framework enables accurate prediction and realistic simulation of dynamic interactions in real-world scenarios.
arXiv Detail & Related papers (2024-11-21T18:55:23Z) - PhysGen: Rigid-Body Physics-Grounded Image-to-Video Generation [29.831214435147583]
We present PhysGen, a novel image-to-video generation method.
It produces a realistic, physically plausible, and temporally consistent video.
Our key insight is to integrate model-based physical simulation with a data-driven video generation process.
arXiv Detail & Related papers (2024-09-27T17:59:57Z) - Latent Intuitive Physics: Learning to Transfer Hidden Physics from A 3D Video [58.043569985784806]
We introduce latent intuitive physics, a transfer learning framework for physics simulation.
It can infer hidden properties of fluids from a single 3D video and simulate the observed fluid in novel scenes.
We validate our model in three ways: (i) novel scene simulation with the learned visual-world physics, (ii) future prediction of the observed fluid dynamics, and (iii) supervised particle simulation.
arXiv Detail & Related papers (2024-06-18T16:37:44Z) - Physics3D: Learning Physical Properties of 3D Gaussians via Video Diffusion [35.71595369663293]
We propose textbfPhysics3D, a novel method for learning various physical properties of 3D objects through a video diffusion model.
Our approach involves designing a highly generalizable physical simulation system based on a viscoelastic material model.
Experiments demonstrate the effectiveness of our method with both elastic and plastic materials.
arXiv Detail & Related papers (2024-06-06T17:59:47Z) - DreamPhysics: Learning Physical Properties of Dynamic 3D Gaussians with Video Diffusion Priors [75.83647027123119]
We propose to learn the physical properties of a material field with video diffusion priors.
We then utilize a physics-based Material-Point-Method simulator to generate 4D content with realistic motions.
arXiv Detail & Related papers (2024-06-03T16:05:25Z) - Physically Compatible 3D Object Modeling from a Single Image [109.98124149566927]
We present a framework that transforms single images into 3D physical objects.
Our framework embeds physical compatibility into the reconstruction process.
It consistently enhances the physical realism of 3D models over existing methods.
arXiv Detail & Related papers (2024-05-30T21:59:29Z) - PhyRecon: Physically Plausible Neural Scene Reconstruction [81.73129450090684]
We introduce PHYRECON, the first approach to leverage both differentiable rendering and differentiable physics simulation to learn implicit surface representations.
Central to this design is an efficient transformation between SDF-based implicit representations and explicit surface points.
Our results also exhibit superior physical stability in physical simulators, with at least a 40% improvement across all datasets.
arXiv Detail & Related papers (2024-04-25T15:06:58Z) - Differentiable Dynamics for Articulated 3d Human Motion Reconstruction [29.683633237503116]
We introduce DiffPhy, a differentiable physics-based model for articulated 3d human motion reconstruction from video.
We validate the model by demonstrating that it can accurately reconstruct physically plausible 3d human motion from monocular video.
arXiv Detail & Related papers (2022-05-24T17:58:37Z) - {\phi}-SfT: Shape-from-Template with a Physics-Based Deformation Model [69.27632025495512]
Shape-from-Template (SfT) methods estimate 3D surface deformations from a single monocular RGB camera.
This paper proposes a new SfT approach explaining 2D observations through physical simulations.
arXiv Detail & Related papers (2022-03-22T17:59:57Z) - gradSim: Differentiable simulation for system identification and
visuomotor control [66.37288629125996]
We present gradSim, a framework that overcomes the dependence on 3D supervision by leveraging differentiable multiphysics simulation and differentiable rendering.
Our unified graph enables learning in challenging visuomotor control tasks, without relying on state-based (3D) supervision.
arXiv Detail & Related papers (2021-04-06T16:32:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.