P2DFlow: A Protein Ensemble Generative Model with SE(3) Flow Matching
- URL: http://arxiv.org/abs/2411.17196v1
- Date: Tue, 26 Nov 2024 08:10:12 GMT
- Title: P2DFlow: A Protein Ensemble Generative Model with SE(3) Flow Matching
- Authors: Yaowei Jin, Qi Huang, Ziyang Song, Mingyue Zheng, Dan Teng, Qian Shi,
- Abstract summary: P2DFlow is a generative model based on SE(3) flow matching to predict the structural ensembles of proteins.
When trained and evaluated on MD datasets of ATLAS, P2DFlow outperforms other baseline models.
As a potential proxy agent for protein molecular simulation, the high-quality ensembles generated by P2DFlow could significantly aid in understanding protein functions across various scenarios.
- Score: 8.620021796568087
- License:
- Abstract: Biological processes, functions, and properties are intricately linked to the ensemble of protein conformations, rather than being solely determined by a single stable conformation. In this study, we have developed P2DFlow, a generative model based on SE(3) flow matching, to predict the structural ensembles of proteins. We specifically designed a valuable prior for the flow process and enhanced the model's ability to distinguish each intermediate state by incorporating an additional dimension to describe the ensemble data, which can reflect the physical laws governing the distribution of ensembles, so that the prior knowledge can effectively guide the generation process. When trained and evaluated on the MD datasets of ATLAS, P2DFlow outperforms other baseline models on extensive experiments, successfully capturing the observable dynamic fluctuations as evidenced in crystal structure and MD simulations. As a potential proxy agent for protein molecular simulation, the high-quality ensembles generated by P2DFlow could significantly aid in understanding protein functions across various scenarios. Code is available at https://github.com/BLEACH366/P2DFlow.
Related papers
- Structure Language Models for Protein Conformation Generation [66.42864253026053]
Traditional physics-based simulation methods often struggle with sampling equilibrium conformations.
Deep generative models have shown promise in generating protein conformations as a more efficient alternative.
We introduce Structure Language Modeling as a novel framework for efficient protein conformation generation.
arXiv Detail & Related papers (2024-10-24T03:38:51Z) - DPLM-2: A Multimodal Diffusion Protein Language Model [75.98083311705182]
We introduce DPLM-2, a multimodal protein foundation model that extends discrete diffusion protein language model (DPLM) to accommodate both sequences and structures.
DPLM-2 learns the joint distribution of sequence and structure, as well as their marginals and conditionals.
Empirical evaluation shows that DPLM-2 can simultaneously generate highly compatible amino acid sequences and their corresponding 3D structures.
arXiv Detail & Related papers (2024-10-17T17:20:24Z) - Improving AlphaFlow for Efficient Protein Ensembles Generation [64.10918970280603]
We propose a feature-conditioned generative model called AlphaFlow-Lit to realize efficient protein ensembles generation.
AlphaFlow-Lit performs on-par with AlphaFlow and surpasses its distilled version without pretraining, all while achieving a significant sampling acceleration of around 47 times.
arXiv Detail & Related papers (2024-07-08T13:36:43Z) - Sequence-Augmented SE(3)-Flow Matching For Conditional Protein Backbone Generation [55.93511121486321]
We introduce FoldFlow-2, a novel sequence-conditioned flow matching model for protein structure generation.
We train FoldFlow-2 at scale on a new dataset that is an order of magnitude larger than PDB datasets of prior works.
We empirically observe that FoldFlow-2 outperforms previous state-of-the-art protein structure-based generative models.
arXiv Detail & Related papers (2024-05-30T17:53:50Z) - Diffusion Language Models Are Versatile Protein Learners [75.98083311705182]
This paper introduces diffusion protein language model (DPLM), a versatile protein language model that demonstrates strong generative and predictive capabilities for protein sequences.
We first pre-train scalable DPLMs from evolutionary-scale protein sequences within a generative self-supervised discrete diffusion probabilistic framework.
After pre-training, DPLM exhibits the ability to generate structurally plausible, novel, and diverse protein sequences for unconditional generation.
arXiv Detail & Related papers (2024-02-28T18:57:56Z) - AlphaFold Meets Flow Matching for Generating Protein Ensembles [11.1639408863378]
We develop a flow-based generative modeling approach for learning and sampling the conformational landscapes of proteins.
Our method provides a superior combination of precision and diversity compared to AlphaFold with MSA subsampling.
Our method can diversify a static PDB structure with faster wall-clock convergence to certain equilibrium properties than replicate MD trajectories.
arXiv Detail & Related papers (2024-02-07T13:44:47Z) - SE(3)-Stochastic Flow Matching for Protein Backbone Generation [54.951832422425454]
We introduce FoldFlow, a series of novel generative models of increasing modeling power based on the flow-matching paradigm over $3mathrmD$ rigid motions.
Our family of FoldFlowgenerative models offers several advantages over previous approaches to the generative modeling of proteins.
arXiv Detail & Related papers (2023-10-03T19:24:24Z) - Str2Str: A Score-based Framework for Zero-shot Protein Conformation
Sampling [23.74897713386661]
The dynamic nature of proteins is crucial for determining their biological functions and properties.
Existing learning-based approaches perform direct sampling yet heavily rely on target-specific simulation data for training.
We propose Str2Str, a novel structure-to-structure translation framework capable of zero-shot conformation sampling.
arXiv Detail & Related papers (2023-06-05T15:19:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.