cWDM: Conditional Wavelet Diffusion Models for Cross-Modality 3D Medical Image Synthesis
- URL: http://arxiv.org/abs/2411.17203v1
- Date: Tue, 26 Nov 2024 08:17:57 GMT
- Title: cWDM: Conditional Wavelet Diffusion Models for Cross-Modality 3D Medical Image Synthesis
- Authors: Paul Friedrich, Alicia Durrer, Julia Wolleb, Philippe C. Cattin,
- Abstract summary: This paper contributes to the "BraTS 2024 Brain MR Image Synthesis Challenge"
It presents a conditional Wavelet Diffusion Model for solving a paired image-to-image translation task on high-resolution volumes.
- Score: 1.767791678320834
- License:
- Abstract: This paper contributes to the "BraTS 2024 Brain MR Image Synthesis Challenge" and presents a conditional Wavelet Diffusion Model (cWDM) for directly solving a paired image-to-image translation task on high-resolution volumes. While deep learning-based brain tumor segmentation models have demonstrated clear clinical utility, they typically require MR scans from various modalities (T1, T1ce, T2, FLAIR) as input. However, due to time constraints or imaging artifacts, some of these modalities may be missing, hindering the application of well-performing segmentation algorithms in clinical routine. To address this issue, we propose a method that synthesizes one missing modality image conditioned on three available images, enabling the application of downstream segmentation models. We treat this paired image-to-image translation task as a conditional generation problem and solve it by combining a Wavelet Diffusion Model for high-resolution 3D image synthesis with a simple conditioning strategy. This approach allows us to directly apply our model to full-resolution volumes, avoiding artifacts caused by slice- or patch-wise data processing. While this work focuses on a specific application, the presented method can be applied to all kinds of paired image-to-image translation problems, such as CT $\leftrightarrow$ MR and MR $\leftrightarrow$ PET translation, or mask-conditioned anatomically guided image generation.
Related papers
- Generalized Consistency Trajectory Models for Image Manipulation [59.576781858809355]
Diffusion models (DMs) excel in unconditional generation, as well as on applications such as image editing and restoration.
This work aims to unlock the full potential of consistency trajectory models (CTMs) by proposing generalized CTMs (GCTMs)
We discuss the design space of GCTMs and demonstrate their efficacy in various image manipulation tasks such as image-to-image translation, restoration, and editing.
arXiv Detail & Related papers (2024-03-19T07:24:54Z) - WDM: 3D Wavelet Diffusion Models for High-Resolution Medical Image Synthesis [1.647759094903376]
This work presents WDM, a wavelet-based medical image synthesis framework that applies a diffusion model on wavelet images.
Experimental results on BraTS and LIDC-IDRI unconditional image generation at a resolution of $128 times 128 times 128$ demonstrate state-of-the-art image fidelity (FID) and sample diversity (MS-SSIM) scores.
Our proposed method is the only one capable of generating high-quality images at a resolution of $256 times 256 times 256$, outperforming all comparing methods.
arXiv Detail & Related papers (2024-02-29T11:11:05Z) - Pathology Synthesis of 3D-Consistent Cardiac MR Images using 2D VAEs and
GANs [0.5039813366558306]
We propose a method for generating labeled data for the application of supervised deep-learning (DL) training.
The image synthesis consists of label deformation and label-to-image translation tasks.
We demonstrate that such an approach could provide a solution to diversify and enrich an available database of cardiac MR images.
arXiv Detail & Related papers (2022-09-09T10:17:49Z) - The Swiss Army Knife for Image-to-Image Translation: Multi-Task
Diffusion Models [0.8999666725996974]
We build on a method for image-to-image translation using denoising diffusion implicit models.
We apply our method to simulate the aging process on facial photos using a regression task.
We also use a segmentation model to inpaint tumors at the desired location in healthy slices of brain MR images.
arXiv Detail & Related papers (2022-04-06T07:52:06Z) - Fluid registration between lung CT and stationary chest tomosynthesis
images [23.239722016943794]
We formulate a 3D/2D registration approach which infers a 3D deformation based on measured projections and digitally reconstructed radiographs.
We demonstrate our approach for the registration between CT and stationary chest tomosynthesis (sDCT) images and show how it naturally leads to an iterative image reconstruction approach.
arXiv Detail & Related papers (2022-03-06T21:51:49Z) - QU-net++: Image Quality Detection Framework for Segmentation of 3D
Medical Image Stacks [0.9594432031144714]
We propose an automated two-step method that evaluates the quality of medical images from 3D image stacks using a U-net++ model.
Images detected can then be used to further fine tune the U-net++ model for semantic segmentation.
arXiv Detail & Related papers (2021-10-27T05:28:02Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
We propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan.
MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations.
We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing.
arXiv Detail & Related papers (2021-07-07T19:06:34Z) - IMAGINE: Image Synthesis by Image-Guided Model Inversion [79.4691654458141]
We introduce an inversion based method, denoted as IMAge-Guided model INvErsion (IMAGINE), to generate high-quality and diverse images.
We leverage the knowledge of image semantics from a pre-trained classifier to achieve plausible generations.
IMAGINE enables the synthesis procedure to simultaneously 1) enforce semantic specificity constraints during the synthesis, 2) produce realistic images without generator training, and 3) give users intuitive control over the generation process.
arXiv Detail & Related papers (2021-04-13T02:00:24Z) - Convolutional-LSTM for Multi-Image to Single Output Medical Prediction [55.41644538483948]
A common scenario in developing countries is to have the volume metadata lost due multiple reasons.
It is possible to get a multi-image to single diagnostic model which mimics human doctor diagnostic process.
arXiv Detail & Related papers (2020-10-20T04:30:09Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
We propose a novel end-to-end GAN architecture that can generate high-resolution 3D images.
We achieve this goal by using different configurations between training and inference.
Experiments on 3D thorax CT and brain MRI demonstrate that our approach outperforms state of the art in image generation.
arXiv Detail & Related papers (2020-08-05T02:33:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.