RealTraj: Towards Real-World Pedestrian Trajectory Forecasting
- URL: http://arxiv.org/abs/2411.17376v1
- Date: Tue, 26 Nov 2024 12:35:26 GMT
- Title: RealTraj: Towards Real-World Pedestrian Trajectory Forecasting
- Authors: Ryo Fujii, Hideo Saito, Ryo Hachiuma,
- Abstract summary: We propose a novel framework, RealTraj, that enhances the real-world applicability of trajectory forecasting.
We present Det2TrajFormer, a trajectory forecasting model that remains invariant in tracking noise by using past detections as inputs.
Unlike previous trajectory forecasting methods, our approach fine-tunes the model using only ground-truth detections, significantly reducing the need for costly person ID annotations.
- Score: 10.332817296500533
- License:
- Abstract: This paper jointly addresses three key limitations in conventional pedestrian trajectory forecasting: pedestrian perception errors, real-world data collection costs, and person ID annotation costs. We propose a novel framework, RealTraj, that enhances the real-world applicability of trajectory forecasting. Our approach includes two training phases--self-supervised pretraining on synthetic data and weakly-supervised fine-tuning with limited real-world data--to minimize data collection efforts. To improve robustness to real-world errors, we focus on both model design and training objectives. Specifically, we present Det2TrajFormer, a trajectory forecasting model that remains invariant in tracking noise by using past detections as inputs. Additionally, we pretrain the model using multiple pretext tasks, which enhance robustness and improve forecasting performance based solely on detection data. Unlike previous trajectory forecasting methods, our approach fine-tunes the model using only ground-truth detections, significantly reducing the need for costly person ID annotations. In the experiments, we comprehensively verify the effectiveness of the proposed method against the limitations, and the method outperforms state-of-the-art trajectory forecasting methods on multiple datasets.
Related papers
- Motion Forecasting via Model-Based Risk Minimization [8.766024024417316]
We propose a novel sampling method applicable to trajectory prediction based on the predictions of multiple models.
We first show that conventional sampling based on predicted probabilities can degrade performance due to missing alignment between models.
By using state-of-the-art models as base learners, our approach constructs diverse and effective ensembles for optimal trajectory sampling.
arXiv Detail & Related papers (2024-09-16T09:03:28Z) - Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - Knowledge-aware Graph Transformer for Pedestrian Trajectory Prediction [15.454206825258169]
Predicting pedestrian motion trajectories is crucial for path planning and motion control of autonomous vehicles.
Recent deep learning-based prediction approaches mainly utilize information like trajectory history and interactions between pedestrians.
This paper proposes a graph transformer structure to improve prediction performance.
arXiv Detail & Related papers (2024-01-10T01:50:29Z) - Towards A Foundation Model For Trajectory Intelligence [0.0]
We present the results of training a large trajectory model using real-world user check-in data.
Our approach follows a pre-train and fine-tune paradigm, where a base model is pre-trained via masked trajectory modeling.
Our empirical analysis utilizes a comprehensive dataset of over 2 billion check-ins generated by more than 6 million users.
arXiv Detail & Related papers (2023-11-30T00:34:09Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - Towards Motion Forecasting with Real-World Perception Inputs: Are
End-to-End Approaches Competitive? [93.10694819127608]
We propose a unified evaluation pipeline for forecasting methods with real-world perception inputs.
Our in-depth study uncovers a substantial performance gap when transitioning from curated to perception-based data.
arXiv Detail & Related papers (2023-06-15T17:03:14Z) - Transforming Model Prediction for Tracking [109.08417327309937]
Transformers capture global relations with little inductive bias, allowing it to learn the prediction of more powerful target models.
We train the proposed tracker end-to-end and validate its performance by conducting comprehensive experiments on multiple tracking datasets.
Our tracker sets a new state of the art on three benchmarks, achieving an AUC of 68.5% on the challenging LaSOT dataset.
arXiv Detail & Related papers (2022-03-21T17:59:40Z) - Trajectory Forecasting from Detection with Uncertainty-Aware Motion
Encoding [121.66374635092097]
Trajectories obtained from object detection and tracking are inevitably noisy.
We propose a trajectory predictor directly based on detection results without relying on explicitly formed trajectories.
arXiv Detail & Related papers (2022-02-03T09:09:56Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Learn to Predict Vertical Track Irregularity with Extremely Imbalanced
Data [6.448383767373112]
We showcase an application framework for predicting vertical track irregularity, based on a real-world, large-scale dataset produced by several operating railways in China.
We also proposed a novel approach for handling imbalanced data in time series prediction tasks with adaptive data sampling and penalized loss.
arXiv Detail & Related papers (2020-12-05T15:49:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.