vesselFM: A Foundation Model for Universal 3D Blood Vessel Segmentation
- URL: http://arxiv.org/abs/2411.17386v1
- Date: Tue, 26 Nov 2024 12:44:42 GMT
- Title: vesselFM: A Foundation Model for Universal 3D Blood Vessel Segmentation
- Authors: Bastian Wittmann, Yannick Wattenberg, Tamaz Amiranashvili, Suprosanna Shit, Bjoern Menze,
- Abstract summary: We present vesselFM, a foundation model designed specifically for the broad task of 3D blood vessel segmentation.
Unlike previous models, vesselFM can effortlessly generalize to unseen domains.
- Score: 2.167228869154864
- License:
- Abstract: Segmenting 3D blood vessels is a critical yet challenging task in medical image analysis. This is due to significant imaging modality-specific variations in artifacts, vascular patterns and scales, signal-to-noise ratios, and background tissues. These variations, along with domain gaps arising from varying imaging protocols, limit the generalization of existing supervised learning-based methods, requiring tedious voxel-level annotations for each dataset separately. While foundation models promise to alleviate this limitation, they typically fail to generalize to the task of blood vessel segmentation, posing a unique, complex problem. In this work, we present vesselFM, a foundation model designed specifically for the broad task of 3D blood vessel segmentation. Unlike previous models, vesselFM can effortlessly generalize to unseen domains. To achieve zero-shot generalization, we train vesselFM on three heterogeneous data sources: a large, curated annotated dataset, data generated by a domain randomization scheme, and data sampled from a flow matching-based generative model. Extensive evaluations show that vesselFM outperforms state-of-the-art medical image segmentation foundation models across four (pre-)clinically relevant imaging modalities in zero-, one-, and few-shot scenarios, therefore providing a universal solution for 3D blood vessel segmentation.
Related papers
- Learning General-Purpose Biomedical Volume Representations using Randomized Synthesis [9.355513913682794]
Current biomedical foundation models struggle to generalize as public 3D datasets are small.
We propose a data engine that synthesizes highly variable training samples that enable generalization to new biomedical contexts.
To then train a single 3D network for any voxel-level task, we develop a contrastive learning method that pretrains the network to be stable against nuisance imaging variation simulated by the data engine.
arXiv Detail & Related papers (2024-11-04T18:40:46Z) - MedDiff-FM: A Diffusion-based Foundation Model for Versatile Medical Image Applications [10.321593505248341]
This paper introduces a diffusion-based foundation model to address a diverse range of medical image tasks, namely MedDiff-FM.
MedDiff-FM leverages 3D CT images from multiple publicly available datasets, covering anatomical regions from head to abdomen, to pre-train a diffusion foundation model.
Experimental results demonstrate the effectiveness of MedDiff-FM in addressing diverse downstream medical image tasks.
arXiv Detail & Related papers (2024-10-20T16:03:55Z) - Denoising Diffusions in Latent Space for Medical Image Segmentation [14.545920180010201]
Diffusion models (DPMs) have demonstrated remarkable performance in image generation, often times outperforming other generative models.
We propose a novel conditional generative modeling framework (LDSeg) that performs diffusion in latent space for medical image segmentation.
arXiv Detail & Related papers (2024-07-17T18:44:38Z) - Introducing Shape Prior Module in Diffusion Model for Medical Image
Segmentation [7.7545714516743045]
We propose an end-to-end framework called VerseDiff-UNet, which leverages the denoising diffusion probabilistic model (DDPM)
Our approach integrates the diffusion model into a standard U-shaped architecture.
We evaluate our method on a single dataset of spine images acquired through X-ray imaging.
arXiv Detail & Related papers (2023-09-12T03:05:00Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - Diffusion Adversarial Representation Learning for Self-supervised Vessel
Segmentation [36.65094442100924]
Vessel segmentation in medical images is one of the important tasks in the diagnosis of vascular diseases and therapy planning.
We introduce a novel diffusion adversarial representation learning (DARL) model that leverages a denoising diffusion probabilistic model with adversarial learning.
Our method significantly outperforms existing unsupervised and self-supervised methods in vessel segmentation.
arXiv Detail & Related papers (2022-09-29T06:06:15Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
We introduce a novel semi-supervised 2D medical image segmentation framework termed Mine yOur owN Anatomy (MONA)
First, prior work argues that every pixel equally matters to the model training; we observe empirically that this alone is unlikely to define meaningful anatomical features.
Second, we construct a set of objectives that encourage the model to be capable of decomposing medical images into a collection of anatomical features.
arXiv Detail & Related papers (2022-09-27T15:50:31Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
We introduce the challenging new task of explainable multiple abnormality classification in volumetric medical images.
We propose a multiple instance learning convolutional neural network, AxialNet, that allows identification of top slices for each abnormality.
We then aim to improve the model's learning through a novel mask loss that leverages HiResCAM and 3D allowed regions.
arXiv Detail & Related papers (2021-11-24T01:14:33Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.