Support Vector Machine for Person Classification Using the EEG Signals
- URL: http://arxiv.org/abs/2411.17446v1
- Date: Tue, 26 Nov 2024 14:03:58 GMT
- Title: Support Vector Machine for Person Classification Using the EEG Signals
- Authors: Naveenkumar G Venkataswamy, Masudul H Imtiaz,
- Abstract summary: We propose using Electroencephalogram (EEG) signals for individual identification to address this challenge.
EEG signals offer promising authentication potential and provide a novel means for liveness detection, thereby mitigating spoofing attacks.
This study employs a public dataset initially compiled for fatigue analysis, featuring EEG data from 12 subjects recorded via an eight-channel OpenBCI helmet.
- Score: 0.4419843514606336
- License:
- Abstract: User authentication is a pivotal element in security systems. Conventional methods including passwords, personal identification numbers, and identification tags are increasingly vulnerable to cyber-attacks. This paper suggests a paradigm shift towards biometric identification technology that leverages unique physiological or behavioral characteristics for user authenticity verification. Nevertheless, biometric solutions like fingerprints, iris patterns, facial and voice recognition are also susceptible to forgery and deception. We propose using Electroencephalogram (EEG) signals for individual identification to address this challenge. Derived from unique brain activities, these signals offer promising authentication potential and provide a novel means for liveness detection, thereby mitigating spoofing attacks. This study employs a public dataset initially compiled for fatigue analysis, featuring EEG data from 12 subjects recorded via an eight-channel OpenBCI helmet. This dataset extracts salient features from the EEG signals and trains a supervised multiclass Support Vector Machine classifier. Upon evaluation, the classifier model achieves a maximum accuracy of 92.9\%, leveraging ten features from each channel. Collectively, these findings highlight the viability of machine learning in implementing real-world, EEG-based biometric identification systems, thereby advancing user authentication technology.
Related papers
- EEG decoding with conditional identification information [7.873458431535408]
Decoding EEG signals is crucial for unraveling human brain and advancing brain-computer interfaces.
Traditional machine learning algorithms have been hindered by the high noise levels and inherent inter-person variations in EEG signals.
Recent advances in deep neural networks (DNNs) have shown promise, owing to their advanced nonlinear modeling capabilities.
arXiv Detail & Related papers (2024-03-21T13:38:59Z) - When Does Your Brain Know You? Segment Length and Its Impact on EEG-based Biometric Authentication Accuracy [3.9735602856280132]
The research seeks to pinpoint a threshold where EEG data provides maximum informational yield for authentication purposes.
The findings are set to advance the field of non-invasive biometric technologies.
arXiv Detail & Related papers (2024-03-19T11:30:03Z) - Biometrics Employing Neural Network [0.0]
Fingerprints, iris and retina patterns, facial recognition, hand shapes, palm prints, and voice recognition are frequently used forms of biometrics.
For systems to be effective and widely accepted, the error rate in recognition and verification must approach zero.
Artificial Neural Networks, which simulate the human brain's operations, present themselves as a promising approach.
arXiv Detail & Related papers (2024-02-01T03:59:04Z) - Multi-Channel Time-Series Person and Soft-Biometric Identification [65.83256210066787]
This work investigates person and soft-biometrics identification from recordings of humans performing different activities using deep architectures.
We evaluate the method on four datasets of multi-channel time-series human activity recognition (HAR)
Soft-biometric based attribute representation shows promising results and emphasis the necessity of larger datasets.
arXiv Detail & Related papers (2023-04-04T07:24:51Z) - Data-driven behavioural biometrics for continuous and adaptive user
verification using Smartphone and Smartwatch [0.0]
We propose an algorithm to blend behavioural biometrics with multi-factor authentication (MFA)
This work proposes a two-step user verification algorithm that verifies the user's identity using motion-based biometrics.
arXiv Detail & Related papers (2021-10-07T02:46:21Z) - Spotting adversarial samples for speaker verification by neural vocoders [102.1486475058963]
We adopt neural vocoders to spot adversarial samples for automatic speaker verification (ASV)
We find that the difference between the ASV scores for the original and re-synthesize audio is a good indicator for discrimination between genuine and adversarial samples.
Our codes will be made open-source for future works to do comparison.
arXiv Detail & Related papers (2021-07-01T08:58:16Z) - Biometrics: Trust, but Verify [49.9641823975828]
Biometric recognition has exploded into a plethora of different applications around the globe.
There are a number of outstanding problems and concerns pertaining to the various sub-modules of biometric recognition systems.
arXiv Detail & Related papers (2021-05-14T03:07:25Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
We present a bioacoustic signal classifier equipped with a discriminative mechanism to extract useful features for analysis and classification efficiently.
Unlike current bioacoustic recognition methods, which are task-oriented, the proposed model relies on transforming the input signals into vector subspaces.
The validity of the proposed method is verified using three challenging bioacoustic datasets containing anuran, bee, and mosquito species.
arXiv Detail & Related papers (2021-03-18T11:01:21Z) - EEG-Based Brain-Computer Interfaces Are Vulnerable to Backdoor Attacks [68.01125081367428]
Recent studies have shown that machine learning algorithms are vulnerable to adversarial attacks.
This article proposes to use narrow period pulse for poisoning attack of EEG-based BCIs, which is implementable in practice and has never been considered before.
arXiv Detail & Related papers (2020-10-30T20:49:42Z) - Disguising Personal Identity Information in EEG Signals [6.9207437122916735]
We propose an approach to disguise the identity information in EEG signals with dummy identities.
The identity information in original EEGs are transformed into disguised ones with a CycleGANbased EEG disguising model.
With the constraints added to the model, the features of interest in EEG signals can be preserved.
arXiv Detail & Related papers (2020-10-18T03:55:38Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
We propose a transferable attention neural network (TANN) for EEG emotion recognition.
TANN learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively.
This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator.
arXiv Detail & Related papers (2020-09-21T02:42:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.