From Fairness to Infinity: Outcome-Indistinguishable (Omni)Prediction in Evolving Graphs
- URL: http://arxiv.org/abs/2411.17582v1
- Date: Tue, 26 Nov 2024 16:49:16 GMT
- Title: From Fairness to Infinity: Outcome-Indistinguishable (Omni)Prediction in Evolving Graphs
- Authors: Cynthia Dwork, Chris Hays, Nicole Immorlica, Juan C. Perdomo, Pranay Tankala,
- Abstract summary: We apply these techniques to evolving graphs, obtaining online outcome-indistinguishable omnipredictors for rich -- possibly infinite -- sets of distinguishers.
This yields, inter alia, multicalibrated predictions of edge formation with respect to pairs of demographic groups.
- Score: 11.033328323347963
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Professional networks provide invaluable entree to opportunity through referrals and introductions. A rich literature shows they also serve to entrench and even exacerbate a status quo of privilege and disadvantage. Hiring platforms, equipped with the ability to nudge link formation, provide a tantalizing opening for beneficial structural change. We anticipate that key to this prospect will be the ability to estimate the likelihood of edge formation in an evolving graph. Outcome-indistinguishable prediction algorithms ensure that the modeled world is indistinguishable from the real world by a family of statistical tests. Omnipredictors ensure that predictions can be post-processed to yield loss minimization competitive with respect to a benchmark class of predictors for many losses simultaneously, with appropriate post-processing. We begin by observing that, by combining a slightly modified form of the online K29 star algorithm of Vovk (2007) with basic facts from the theory of reproducing kernel Hilbert spaces, one can derive simple and efficient online algorithms satisfying outcome indistinguishability and omniprediction, with guarantees that improve upon, or are complementary to, those currently known. This is of independent interest. We apply these techniques to evolving graphs, obtaining online outcome-indistinguishable omnipredictors for rich -- possibly infinite -- sets of distinguishers that capture properties of pairs of nodes, and their neighborhoods. This yields, inter alia, multicalibrated predictions of edge formation with respect to pairs of demographic groups, and the ability to simultaneously optimize loss as measured by a variety of social welfare functions.
Related papers
- Uncertainty-Aware Graph Neural Networks: A Multi-Hop Evidence Fusion Approach [55.43914153271912]
Graph neural networks (GNNs) excel in graph representation learning by integrating graph structure and node features.<n>Existing GNNs fail to account for the uncertainty of class probabilities that vary with the depth of the model, leading to unreliable and risky predictions in real-world scenarios.<n>We propose a novel Evidence Fusing Graph Neural Network (EFGNN for short) to achieve trustworthy prediction, enhance node classification accuracy, and make explicit the risk of wrong predictions.
arXiv Detail & Related papers (2025-06-16T03:59:38Z) - MAPPING: Debiasing Graph Neural Networks for Fair Node Classification
with Limited Sensitive Information Leakage [1.8238848494579714]
We propose a novel model-agnostic debiasing framework named MAPPING for fair node classification.
Our results show that MAPPING can achieve better trade-offs between utility and fairness, and privacy risks of sensitive information leakage.
arXiv Detail & Related papers (2024-01-23T14:59:46Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
Neuro-symbolic approaches typically resort to fuzzy approximations of a probabilistic objective.
We show how to compute this efficiently for tractable circuits.
We test our approach on three tasks: predicting a minimum-cost path in Warcraft, predicting a minimum-cost perfect matching, and solving Sudoku puzzles.
arXiv Detail & Related papers (2023-02-28T00:04:22Z) - Drop Edges and Adapt: a Fairness Enforcing Fine-tuning for Graph Neural
Networks [9.362130313618797]
Link prediction algorithms tend to disfavor the links between individuals in specific demographic groups.
This paper proposes a novel way to enforce fairness on graph neural networks with a fine-tuning strategy.
One novelty of DEA is that we can use a discrete yet learnable adjacency matrix in our fine-tuning.
arXiv Detail & Related papers (2023-02-22T16:28:08Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - Robustification of Online Graph Exploration Methods [59.50307752165016]
We study a learning-augmented variant of the classical, notoriously hard online graph exploration problem.
We propose an algorithm that naturally integrates predictions into the well-known Nearest Neighbor (NN) algorithm.
arXiv Detail & Related papers (2021-12-10T10:02:31Z) - Biased Edge Dropout for Enhancing Fairness in Graph Representation
Learning [14.664485680918725]
We propose a biased edge dropout algorithm (FairDrop) to counter-act homophily and improve fairness in graph representation learning.
FairDrop can be plugged in easily on many existing algorithms, is efficient, adaptable, and can be combined with other fairness-inducing solutions.
We prove that the proposed algorithm can successfully improve the fairness of all models up to a small or negligible drop in accuracy.
arXiv Detail & Related papers (2021-04-29T08:59:36Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - All of the Fairness for Edge Prediction with Optimal Transport [11.51786288978429]
We study the problem of fairness for the task of edge prediction in graphs.
We propose an embedding-agnostic repairing procedure for the adjacency matrix of an arbitrary graph with a trade-off between the group and individual fairness.
arXiv Detail & Related papers (2020-10-30T15:33:13Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Bayesian Deep Learning and a Probabilistic Perspective of Generalization [56.69671152009899]
We show that deep ensembles provide an effective mechanism for approximate Bayesian marginalization.
We also propose a related approach that further improves the predictive distribution by marginalizing within basins of attraction.
arXiv Detail & Related papers (2020-02-20T15:13:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.