BERT or FastText? A Comparative Analysis of Contextual as well as Non-Contextual Embeddings
- URL: http://arxiv.org/abs/2411.17661v1
- Date: Tue, 26 Nov 2024 18:25:57 GMT
- Title: BERT or FastText? A Comparative Analysis of Contextual as well as Non-Contextual Embeddings
- Authors: Abhay Shanbhag, Suramya Jadhav, Amogh Thakurdesai, Ridhima Sinare, Raviraj Joshi,
- Abstract summary: The choice of embeddings plays a critical role in enhancing the performance of NLP tasks.
In this study, we investigate the impact of various embedding techniques- Contextual BERT-based, Non-Contextual BERT-based, and FastText-based on NLP classification tasks specific to the Marathi language.
- Score: 0.4194295877935868
- License:
- Abstract: Natural Language Processing (NLP) for low-resource languages presents significant challenges, particularly due to the scarcity of high-quality annotated data and linguistic resources. The choice of embeddings plays a critical role in enhancing the performance of NLP tasks, such as news classification, sentiment analysis, and hate speech detection, especially for low-resource languages like Marathi. In this study, we investigate the impact of various embedding techniques- Contextual BERT-based, Non-Contextual BERT-based, and FastText-based on NLP classification tasks specific to the Marathi language. Our research includes a thorough evaluation of both compressed and uncompressed embeddings, providing a comprehensive overview of how these embeddings perform across different scenarios. Specifically, we compare two BERT model embeddings, Muril and MahaBERT, as well as two FastText model embeddings, IndicFT and MahaFT. Our evaluation includes applying embeddings to a Multiple Logistic Regression (MLR) classifier for task performance assessment, as well as TSNE visualizations to observe the spatial distribution of these embeddings. The results demonstrate that contextual embeddings outperform non-contextual embeddings. Furthermore, BERT-based non-contextual embeddings extracted from the first BERT embedding layer yield better results than FastText-based embeddings, suggesting a potential alternative to FastText embeddings.
Related papers
- A Data Selection Approach for Enhancing Low Resource Machine Translation Using Cross-Lingual Sentence Representations [0.4499833362998489]
This study focuses on the case of English-Marathi language pairs, where existing datasets are notably noisy.
To mitigate the impact of data quality issues, we propose a data filtering approach based on cross-lingual sentence representations.
Results demonstrate a significant improvement in translation quality over the baseline post-filtering with IndicSBERT.
arXiv Detail & Related papers (2024-09-04T13:49:45Z) - MoSECroT: Model Stitching with Static Word Embeddings for Crosslingual Zero-shot Transfer [50.40191599304911]
We introduce MoSECroT Model Stitching with Static Word Embeddings for Crosslingual Zero-shot Transfer.
In this paper, we present the first framework that leverages relative representations to construct a common space for the embeddings of a source language PLM and the static word embeddings of a target language.
We show that although our proposed framework is competitive with weak baselines when addressing MoSECroT, it fails to achieve competitive results compared with some strong baselines.
arXiv Detail & Related papers (2024-01-09T21:09:07Z) - Improving Text Embeddings with Large Language Models [59.930513259982725]
We introduce a novel and simple method for obtaining high-quality text embeddings using only synthetic data and less than 1k training steps.
We leverage proprietary LLMs to generate diverse synthetic data for hundreds of thousands of text embedding tasks across 93 languages.
Experiments demonstrate that our method achieves strong performance on highly competitive text embedding benchmarks without using any labeled data.
arXiv Detail & Related papers (2023-12-31T02:13:18Z) - Visually-augmented pretrained language models for NLP tasks without
images [77.74849855049523]
Existing solutions often rely on explicit images for visual knowledge augmentation.
We propose a novel textbfVisually-textbfAugmented fine-tuning approach.
Our approach can consistently improve the performance of BERT, RoBERTa, BART, and T5 at different scales.
arXiv Detail & Related papers (2022-12-15T16:13:25Z) - BERT for Sentiment Analysis: Pre-trained and Fine-Tuned Alternatives [0.0]
BERT has revolutionized the NLP field by enabling transfer learning with large language models.
This article studies how to better cope with the different embeddings provided by the BERT output layer and the usage of language-specific instead of multilingual models.
arXiv Detail & Related papers (2022-01-10T15:05:05Z) - Evaluation of BERT and ALBERT Sentence Embedding Performance on
Downstream NLP Tasks [4.955649816620742]
This paper explores on sentence embedding models for BERT and ALBERT.
We take a modified BERT network with siamese and triplet network structures called Sentence-BERT (SBERT) and replace BERT with ALBERT to create Sentence-ALBERT (SALBERT)
arXiv Detail & Related papers (2021-01-26T09:14:06Z) - GiBERT: Introducing Linguistic Knowledge into BERT through a Lightweight
Gated Injection Method [29.352569563032056]
We propose a novel method to explicitly inject linguistic knowledge in the form of word embeddings into a pre-trained BERT.
Our performance improvements on multiple semantic similarity datasets when injecting dependency-based and counter-fitted embeddings indicate that such information is beneficial and currently missing from the original model.
arXiv Detail & Related papers (2020-10-23T17:00:26Z) - Intrinsic Probing through Dimension Selection [69.52439198455438]
Most modern NLP systems make use of pre-trained contextual representations that attain astonishingly high performance on a variety of tasks.
Such high performance should not be possible unless some form of linguistic structure inheres in these representations, and a wealth of research has sprung up on probing for it.
In this paper, we draw a distinction between intrinsic probing, which examines how linguistic information is structured within a representation, and the extrinsic probing popular in prior work, which only argues for the presence of such information by showing that it can be successfully extracted.
arXiv Detail & Related papers (2020-10-06T15:21:08Z) - Table Search Using a Deep Contextualized Language Model [20.041167804194707]
In this paper, we use the deep contextualized language model BERT for the task of ad hoc table retrieval.
We propose an approach that incorporates features from prior literature on table retrieval and jointly trains them with BERT.
arXiv Detail & Related papers (2020-05-19T04:18:04Z) - Coreferential Reasoning Learning for Language Representation [88.14248323659267]
We present CorefBERT, a novel language representation model that can capture the coreferential relations in context.
The experimental results show that, compared with existing baseline models, CorefBERT can achieve significant improvements consistently on various downstream NLP tasks.
arXiv Detail & Related papers (2020-04-15T03:57:45Z) - Incorporating BERT into Neural Machine Translation [251.54280200353674]
We propose a new algorithm named BERT-fused model, in which we first use BERT to extract representations for an input sequence.
We conduct experiments on supervised (including sentence-level and document-level translations), semi-supervised and unsupervised machine translation, and achieve state-of-the-art results on seven benchmark datasets.
arXiv Detail & Related papers (2020-02-17T08:13:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.