Synthetic Data Generation with LLM for Improved Depression Prediction
- URL: http://arxiv.org/abs/2411.17672v1
- Date: Tue, 26 Nov 2024 18:31:14 GMT
- Title: Synthetic Data Generation with LLM for Improved Depression Prediction
- Authors: Andrea Kang, Jun Yu Chen, Zoe Lee-Youngzie, Shuhao Fu,
- Abstract summary: We propose a pipeline for Large Language Models to generate synthetic data to improve the performance of depression prediction models.
Not only was the synthetic data satisfactory in terms of fidelity and privacy-preserving metrics, it also balanced the distribution of severity in the training dataset.
- Score: 5.508617844957542
- License:
- Abstract: Automatic detection of depression is a rapidly growing field of research at the intersection of psychology and machine learning. However, with its exponential interest comes a growing concern for data privacy and scarcity due to the sensitivity of such a topic. In this paper, we propose a pipeline for Large Language Models (LLMs) to generate synthetic data to improve the performance of depression prediction models. Starting from unstructured, naturalistic text data from recorded transcripts of clinical interviews, we utilize an open-source LLM to generate synthetic data through chain-of-thought prompting. This pipeline involves two key steps: the first step is the generation of the synopsis and sentiment analysis based on the original transcript and depression score, while the second is the generation of the synthetic synopsis/sentiment analysis based on the summaries generated in the first step and a new depression score. Not only was the synthetic data satisfactory in terms of fidelity and privacy-preserving metrics, it also balanced the distribution of severity in the training dataset, thereby significantly enhancing the model's capability in predicting the intensity of the patient's depression. By leveraging LLMs to generate synthetic data that can be augmented to limited and imbalanced real-world datasets, we demonstrate a novel approach to addressing data scarcity and privacy concerns commonly faced in automatic depression detection, all while maintaining the statistical integrity of the original dataset. This approach offers a robust framework for future mental health research and applications.
Related papers
- Generation of synthetic gait data: application to multiple sclerosis patients' gait patterns [0.0]
Multiple sclerosis (MS) is the leading cause of severe non-traumatic disability in young adults and its incidence is increasing worldwide.
The variability of gait impairment in MS necessitates the development of a non-invasive, sensitive, and cost-effective tool for quantitative gait evaluation.
The eGait movement sensor, designed to characterize human gait through unit quaternion time series (QTS) representing hip rotations, is a promising approach.
However, the small sample sizes typical of clinical studies pose challenges for the stability of gait data analysis tools.
arXiv Detail & Related papers (2024-11-15T17:32:01Z) - Mitigating the Privacy Issues in Retrieval-Augmented Generation (RAG) via Pure Synthetic Data [51.41288763521186]
Retrieval-augmented generation (RAG) enhances the outputs of language models by integrating relevant information retrieved from external knowledge sources.
RAG systems may face severe privacy risks when retrieving private data.
We propose using synthetic data as a privacy-preserving alternative for the retrieval data.
arXiv Detail & Related papers (2024-06-20T22:53:09Z) - Synthetic Oversampling: Theory and A Practical Approach Using LLMs to Address Data Imbalance [16.047084318753377]
Imbalanced data and spurious correlations are common challenges in machine learning and data science.
Oversampling, which artificially increases the number of instances in the underrepresented classes, has been widely adopted to tackle these challenges.
We introduce OPAL, a systematic oversampling approach that leverages the capabilities of large language models to generate high-quality synthetic data for minority groups.
arXiv Detail & Related papers (2024-06-05T21:24:26Z) - The Real Deal Behind the Artificial Appeal: Inferential Utility of Tabular Synthetic Data [40.165159490379146]
We show that the rate of false-positive findings (type 1 error) will be unacceptably high, even when the estimates are unbiased.
Despite the use of a previously proposed correction factor, this problem persists for deep generative models.
arXiv Detail & Related papers (2023-12-13T02:04:41Z) - Boosting Data Analytics With Synthetic Volume Expansion [3.568650932986342]
This article explores the effectiveness of statistical methods on synthetic data and the privacy risks of synthetic data.
A key finding within this framework is the generational effect, which reveals that the error rate of statistical methods on synthetic data decreases with the addition of more synthetic data but may eventually rise or stabilize.
arXiv Detail & Related papers (2023-10-27T01:57:27Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - Does Synthetic Data Make Large Language Models More Efficient? [0.0]
This paper explores the nuances of synthetic data generation in NLP.
We highlight its advantages, including data augmentation potential and the introduction of structured variety.
We demonstrate the impact of template-based synthetic data on the performance of modern transformer models.
arXiv Detail & Related papers (2023-10-11T19:16:09Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
Synthetic data may become a dominant force in the machine learning world, promising a future where datasets can be tailored to individual needs.
We discuss which fundamental challenges the community needs to overcome for wider relevance and application of synthetic data.
arXiv Detail & Related papers (2023-04-07T16:38:40Z) - Delving into High-Quality Synthetic Face Occlusion Segmentation Datasets [83.749895930242]
We propose two techniques for producing high-quality naturalistic synthetic occluded faces.
We empirically show the effectiveness and robustness of both methods, even for unseen occlusions.
We present two high-resolution real-world occluded face datasets with fine-grained annotations, RealOcc and RealOcc-Wild.
arXiv Detail & Related papers (2022-05-12T17:03:57Z) - Hide-and-Seek Privacy Challenge [88.49671206936259]
The NeurIPS 2020 Hide-and-Seek Privacy Challenge is a novel two-tracked competition to accelerate progress in tackling both problems.
In our head-to-head format, participants in the synthetic data generation track (i.e. "hiders") and the patient re-identification track (i.e. "seekers") are directly pitted against each other by way of a new, high-quality intensive care time-series dataset.
arXiv Detail & Related papers (2020-07-23T15:50:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.