Can bidirectional encoder become the ultimate winner for downstream applications of foundation models?
- URL: http://arxiv.org/abs/2411.18021v1
- Date: Wed, 27 Nov 2024 03:31:14 GMT
- Title: Can bidirectional encoder become the ultimate winner for downstream applications of foundation models?
- Authors: Lewen Yang, Xuanyu Zhou, Juao Fan, Xinyi Xie, Shengxin Zhu,
- Abstract summary: Foundational models have the characteristics of pre-training, transfer learning, and self-supervised learning.
BERT broke through the limitation of only using one-way methods for language modeling in pre-training by using a masked language model.
This article analyzes one-way and bidirectional models based on GPT and BERT and compares their differences based on the purpose of the model.
- Score: 1.8120356834558644
- License:
- Abstract: Over the past few decades, Artificial Intelligence(AI) has progressed from the initial machine learning stage to the deep learning stage, and now to the stage of foundational models. Foundational models have the characteristics of pre-training, transfer learning, and self-supervised learning, and pre-trained models can be fine-tuned and applied to various downstream tasks. Under the framework of foundational models, models such as Bidirectional Encoder Representations from Transformers(BERT) and Generative Pre-trained Transformer(GPT) have greatly advanced the development of natural language processing(NLP), especially the emergence of many models based on BERT. BERT broke through the limitation of only using one-way methods for language modeling in pre-training by using a masked language model. It can capture bidirectional context information to predict the masked words in the sequence, this can improve the feature extraction ability of the model. This makes the model very useful for downstream tasks, especially for specialized applications. The model using the bidirectional encoder can better understand the domain knowledge and be better applied to these downstream tasks. So we hope to help understand how this technology has evolved and improved model performance in various natural language processing tasks under the background of foundational models and reveal its importance in capturing context information and improving the model's performance on downstream tasks. This article analyzes one-way and bidirectional models based on GPT and BERT and compares their differences based on the purpose of the model. It also briefly analyzes BERT and the improvements of some models based on BERT. The model's performance on the Stanford Question Answering Dataset(SQuAD) and General Language Understanding Evaluation(GLUE) was compared.
Related papers
- ModelGrow: Continual Text-to-Video Pre-training with Model Expansion and Language Understanding Enhancement [49.513401043490305]
This work explores the continual general pre-training of text-to-video models.
We break this task into two key aspects: increasing model capacity and improving semantic understanding.
For semantic understanding, we propose a method that leverages large language models as advanced text encoders.
arXiv Detail & Related papers (2024-12-25T18:58:07Z) - ML-SUPERB 2.0: Benchmarking Multilingual Speech Models Across Modeling Constraints, Languages, and Datasets [106.7760874400261]
This paper presents ML-SUPERB2.0, which is a new benchmark for evaluating pre-trained SSL and supervised speech models.
We find performance improvements over the setup of ML-SUPERB, but performance depends on the downstream model design.
Also, we find large performance differences between languages and datasets, suggesting the need for more targeted approaches.
arXiv Detail & Related papers (2024-06-12T21:01:26Z) - Foundational GPT Model for MEG [3.524869467682149]
We propose two classes of deep learning foundational models that can be trained using forecasting of unlabelled brain signals.
First, we consider a modified Wavenet; and second, we consider a modified Transformer-based (GPT2) model.
We compare the performance of these deep learning models with standard linear autoregressive (AR) modelling on MEG data.
arXiv Detail & Related papers (2024-04-14T13:48:24Z) - MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided
Adaptation [68.30497162547768]
We propose MoEBERT, which uses a Mixture-of-Experts structure to increase model capacity and inference speed.
We validate the efficiency and effectiveness of MoEBERT on natural language understanding and question answering tasks.
arXiv Detail & Related papers (2022-04-15T23:19:37Z) - What Language Model Architecture and Pretraining Objective Work Best for
Zero-Shot Generalization? [50.84738303888189]
We present a large-scale evaluation of modeling choices and their impact on zero-shot generalization.
We train models with over 5 billion parameters for more than 170 billion tokens.
We find that pretrained causal decoder models can be efficiently adapted into non-causal decoder models.
arXiv Detail & Related papers (2022-04-12T14:19:49Z) - Interpreting Language Models Through Knowledge Graph Extraction [42.97929497661778]
We compare BERT-based language models through snapshots of acquired knowledge at sequential stages of the training process.
We present a methodology to unveil a knowledge acquisition timeline by generating knowledge graph extracts from cloze "fill-in-the-blank" statements.
We extend this analysis to a comparison of pretrained variations of BERT models (DistilBERT, BERT-base, RoBERTa)
arXiv Detail & Related papers (2021-11-16T15:18:01Z) - bert2BERT: Towards Reusable Pretrained Language Models [51.078081486422896]
We propose bert2BERT, which can effectively transfer the knowledge of an existing smaller pre-trained model to a large model.
bert2BERT saves about 45% and 47% computational cost of pre-training BERT_BASE and GPT_BASE by reusing the models of almost their half sizes.
arXiv Detail & Related papers (2021-10-14T04:05:25Z) - A Comparative Study of Transformer-Based Language Models on Extractive
Question Answering [0.5079811885340514]
We train various pre-trained language models and fine-tune them on multiple question answering datasets.
Using the F1-score as our metric, we find that the RoBERTa and BART pre-trained models perform the best across all datasets.
arXiv Detail & Related papers (2021-10-07T02:23:19Z) - Introducing various Semantic Models for Amharic: Experimentation and
Evaluation with multiple Tasks and Datasets [19.855120632909124]
We introduce different semantic models for Amharic.
Models are build using word2Vec embeddings, distributional thesaurus (DT), contextual embeddings, and DT embeddings.
We find that newly trained models perform better than pre-trained multilingual models.
arXiv Detail & Related papers (2020-11-02T17:48:25Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.