PDZSeg: Adapting the Foundation Model for Dissection Zone Segmentation with Visual Prompts in Robot-assisted Endoscopic Submucosal Dissection
- URL: http://arxiv.org/abs/2411.18169v1
- Date: Wed, 27 Nov 2024 09:28:50 GMT
- Title: PDZSeg: Adapting the Foundation Model for Dissection Zone Segmentation with Visual Prompts in Robot-assisted Endoscopic Submucosal Dissection
- Authors: Mengya Xu, Wenjin Mo, Guankun Wang, Huxin Gao, An Wang, Zhen Li, Xiaoxiao Yang, Hongliang Ren,
- Abstract summary: This study aims to provide precise dissection zone suggestions during endoscopic submucosal dissection procedures.
We propose the Prompted-based Dissection Zone (PDZSeg) model, designed to leverage diverse visual prompts such as scribbles and bounding boxes.
- Score: 8.817421628903332
- License:
- Abstract: Purpose: Endoscopic surgical environments present challenges for dissection zone segmentation due to unclear boundaries between tissue types, leading to segmentation errors where models misidentify or overlook edges. This study aims to provide precise dissection zone suggestions during endoscopic submucosal dissection (ESD) procedures, enhancing ESD safety. Methods: We propose the Prompted-based Dissection Zone Segmentation (PDZSeg) model, designed to leverage diverse visual prompts such as scribbles and bounding boxes. By overlaying these prompts onto images and fine-tuning a foundational model on a specialized dataset, our approach improves segmentation performance and user experience through flexible input methods. Results: The PDZSeg model was validated using three experimental setups: in-domain evaluation, variability in visual prompt availability, and robustness assessment. Using the ESD-DZSeg dataset, results show that our method outperforms state-of-the-art segmentation approaches. This is the first study to integrate visual prompt design into dissection zone segmentation. Conclusion: The PDZSeg model effectively utilizes visual prompts to enhance segmentation performance and user experience, supported by the novel ESD-DZSeg dataset as a benchmark for dissection zone segmentation in ESD. Our work establishes a foundation for future research.
Related papers
- Adversarial Vessel-Unveiling Semi-Supervised Segmentation for Retinopathy of Prematurity Diagnosis [9.683492465191241]
We propose a semi supervised segmentation framework designed to advance ROP studies without the need for extensive manual vessel annotation.
Unlike previous methods that rely solely on limited labeled data, our approach integrates uncertainty weighted vessel unveiling module and domain adversarial learning.
We validate our approach on public datasets and an in-house ROP dataset, demonstrating its superior performance across multiple evaluation metrics.
arXiv Detail & Related papers (2024-11-14T02:40:34Z) - CriDiff: Criss-cross Injection Diffusion Framework via Generative Pre-train for Prostate Segmentation [60.61972883059688]
CriDiff is a two-stage feature injecting framework with a Crisscross Injection Strategy (CIS) and a Generative Pre-train (GP) approach for prostate segmentation.
To effectively learn multi-level of edge features and non-edge features, we proposed two parallel conditioners in the CIS.
The GP approach eases the inconsistency between the images features and the diffusion model without adding additional parameters.
arXiv Detail & Related papers (2024-06-20T10:46:50Z) - DiffVein: A Unified Diffusion Network for Finger Vein Segmentation and
Authentication [50.017055360261665]
We introduce DiffVein, a unified diffusion model-based framework which simultaneously addresses vein segmentation and authentication tasks.
For better feature interaction between these two branches, we introduce two specialized modules.
In this way, our framework allows for a dynamic interplay between diffusion and segmentation embeddings.
arXiv Detail & Related papers (2024-02-03T06:49:42Z) - Adaptive Semi-Supervised Segmentation of Brain Vessels with Ambiguous
Labels [63.415444378608214]
Our approach incorporates innovative techniques including progressive semi-supervised learning, adaptative training strategy, and boundary enhancement.
Experimental results on 3DRA datasets demonstrate the superiority of our method in terms of mesh-based segmentation metrics.
arXiv Detail & Related papers (2023-08-07T14:16:52Z) - Pre-Training with Diffusion models for Dental Radiography segmentation [0.0]
We propose a straightforward pre-training method for semantic segmentation.
Our approach achieves remarkable performance in terms of label efficiency.
Our experimental results on the segmentation of dental radiographs demonstrate that the proposed method is competitive with state-of-the-art pre-training methods.
arXiv Detail & Related papers (2023-07-26T09:33:24Z) - CGAM: Click-Guided Attention Module for Interactive Pathology Image
Segmentation via Backpropagating Refinement [8.590026259176806]
Tumor region segmentation is an essential task for the quantitative analysis of digital pathology.
Recent deep neural networks have shown state-of-the-art performance in various image-segmentation tasks.
We propose an interactive segmentation method that allows users to refine the output of deep neural networks through click-type user interactions.
arXiv Detail & Related papers (2023-07-03T13:45:24Z) - DIAS: A Dataset and Benchmark for Intracranial Artery Segmentation in DSA sequences [19.61593883367223]
Intracranial Arteries (IA) in Digital Subtraction Angiography (DSA) plays a crucial role in the quantification of vascular morphology.
Current research primarily focuses on the segmentation of single-frame DSA using proprietary datasets.
We introduce DIAS, a dataset specifically developed for IA segmentation in DSA sequences.
arXiv Detail & Related papers (2023-06-21T10:03:56Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Unsupervised Instance Segmentation in Microscopy Images via Panoptic
Domain Adaptation and Task Re-weighting [86.33696045574692]
We propose a Cycle Consistency Panoptic Domain Adaptive Mask R-CNN (CyC-PDAM) architecture for unsupervised nuclei segmentation in histopathology images.
We first propose a nuclei inpainting mechanism to remove the auxiliary generated objects in the synthesized images.
Secondly, a semantic branch with a domain discriminator is designed to achieve panoptic-level domain adaptation.
arXiv Detail & Related papers (2020-05-05T11:08:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.