Incomplete Multi-view Multi-label Classification via a Dual-level Contrastive Learning Framework
- URL: http://arxiv.org/abs/2411.18267v1
- Date: Wed, 27 Nov 2024 12:04:04 GMT
- Title: Incomplete Multi-view Multi-label Classification via a Dual-level Contrastive Learning Framework
- Authors: Bingyan Nie, Wulin Xie, Jiang Long, Xiaohuan Lu,
- Abstract summary: In this paper, we propose our dual-level contrastive learning framework to solve the issue of double missing multi-view multi-label classification.
Experiments on several widely used benchmark datasets demonstrate that the proposed method has more stable and superior classification performance.
- Score: 1.224954637705144
- License:
- Abstract: Recently, multi-view and multi-label classification have become significant domains for comprehensive data analysis and exploration. However, incompleteness both in views and labels is still a real-world scenario for multi-view multi-label classification. In this paper, we seek to focus on double missing multi-view multi-label classification tasks and propose our dual-level contrastive learning framework to solve this issue. Different from the existing works, which couple consistent information and view-specific information in the same feature space, we decouple the two heterogeneous properties into different spaces and employ contrastive learning theory to fully disentangle the two properties. Specifically, our method first introduces a two-channel decoupling module that contains a shared representation and a view-proprietary representation to effectively extract consistency and complementarity information across all views. Second, to efficiently filter out high-quality consistent information from multi-view representations, two consistency objectives based on contrastive learning are conducted on the high-level features and the semantic labels, respectively. Extensive experiments on several widely used benchmark datasets demonstrate that the proposed method has more stable and superior classification performance.
Related papers
- Multi-View Factorizing and Disentangling: A Novel Framework for Incomplete Multi-View Multi-Label Classification [9.905528765058541]
We propose a novel framework for incomplete multi-view multi-label classification (iMvMLC)
Our method factorizes multi-view representations into two independent sets of factors: view-consistent and view-specific.
Our framework innovatively decomposes consistent representation learning into three key sub-objectives.
arXiv Detail & Related papers (2025-01-11T12:19:20Z) - DualCoOp++: Fast and Effective Adaptation to Multi-Label Recognition
with Limited Annotations [79.433122872973]
Multi-label image recognition in the low-label regime is a task of great challenge and practical significance.
We leverage the powerful alignment between textual and visual features pretrained with millions of auxiliary image-text pairs.
We introduce an efficient and effective framework called Evidence-guided Dual Context Optimization (DualCoOp++)
arXiv Detail & Related papers (2023-08-03T17:33:20Z) - Reliable Representations Learning for Incomplete Multi-View Partial Multi-Label Classification [78.15629210659516]
In this paper, we propose an incomplete multi-view partial multi-label classification network named RANK.
We break through the view-level weights inherent in existing methods and propose a quality-aware sub-network to dynamically assign quality scores to each view of each sample.
Our model is not only able to handle complete multi-view multi-label datasets, but also works on datasets with missing instances and labels.
arXiv Detail & Related papers (2023-03-30T03:09:25Z) - DICNet: Deep Instance-Level Contrastive Network for Double Incomplete
Multi-View Multi-Label Classification [20.892833511657166]
Multi-view multi-label data in the real world is commonly incomplete due to the uncertain factors of data collection and manual annotation.
We propose a deep instance-level contrastive network, namely DICNet, to deal with the double incomplete multi-view multi-label classification problem.
Our DICNet is adept in capturing consistent discriminative representations of multi-view multi-label data and avoiding the negative effects of missing views and missing labels.
arXiv Detail & Related papers (2023-03-15T04:24:01Z) - Incomplete Multi-View Multi-Label Learning via Label-Guided Masked View-
and Category-Aware Transformers [19.720564730308993]
We propose a general multi-view multi-label learning framework named label-guided masked view- and category-aware transformers.
Considering the imbalance of expressive power among views, an adaptively weighted view fusion module is proposed to obtain view-consistent embedding features.
arXiv Detail & Related papers (2023-03-13T15:22:50Z) - Cross-view Graph Contrastive Representation Learning on Partially
Aligned Multi-view Data [52.491074276133325]
Multi-view representation learning has developed rapidly over the past decades and has been applied in many fields.
We propose a new cross-view graph contrastive learning framework, which integrates multi-view information to align data and learn latent representations.
Experiments conducted on several real datasets demonstrate the effectiveness of the proposed method on the clustering and classification tasks.
arXiv Detail & Related papers (2022-11-08T09:19:32Z) - Dual Representation Learning for One-Step Clustering of Multi-View Data [30.131568561100817]
We propose a novel one-step multi-view clustering method by exploiting the dual representation of both the common and specific information of different views.
With this framework, the representation learning and clustering partition mutually benefit each other, which effectively improve the clustering performance.
arXiv Detail & Related papers (2022-08-30T14:20:26Z) - Variational Distillation for Multi-View Learning [104.17551354374821]
We design several variational information bottlenecks to exploit two key characteristics for multi-view representation learning.
Under rigorously theoretical guarantee, our approach enables IB to grasp the intrinsic correlation between observations and semantic labels.
arXiv Detail & Related papers (2022-06-20T03:09:46Z) - Multi-Label Image Classification with Contrastive Learning [57.47567461616912]
We show that a direct application of contrastive learning can hardly improve in multi-label cases.
We propose a novel framework for multi-label classification with contrastive learning in a fully supervised setting.
arXiv Detail & Related papers (2021-07-24T15:00:47Z) - Embedded Deep Bilinear Interactive Information and Selective Fusion for
Multi-view Learning [70.67092105994598]
We propose a novel multi-view learning framework to make the multi-view classification better aimed at the above-mentioned two aspects.
In particular, we train different deep neural networks to learn various intra-view representations.
Experiments on six publicly available datasets demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2020-07-13T01:13:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.