An indicator for effectiveness of text-to-image guardrails utilizing the Single-Turn Crescendo Attack (STCA)
- URL: http://arxiv.org/abs/2411.18699v1
- Date: Wed, 27 Nov 2024 19:09:16 GMT
- Title: An indicator for effectiveness of text-to-image guardrails utilizing the Single-Turn Crescendo Attack (STCA)
- Authors: Ted Kwartler, Nataliia Bagan, Ivan Banny, Alan Aqrawi, Arian Abbasi,
- Abstract summary: Single-Turn Crescendo Attack (STCA) is an innovative method designed to bypass the ethical safeguards of text-to-text AI models.
This study provides a framework for researchers to rigorously evaluate the robustness of guardrails in text-to-image models.
- Score: 0.0
- License:
- Abstract: The Single-Turn Crescendo Attack (STCA), first introduced in Aqrawi and Abbasi [2024], is an innovative method designed to bypass the ethical safeguards of text-to-text AI models, compelling them to generate harmful content. This technique leverages a strategic escalation of context within a single prompt, combined with trust-building mechanisms, to subtly deceive the model into producing unintended outputs. Extending the application of STCA to text-to-image models, we demonstrate its efficacy by compromising the guardrails of a widely-used model, DALL-E 3, achieving outputs comparable to outputs from the uncensored model Flux Schnell, which served as a baseline control. This study provides a framework for researchers to rigorously evaluate the robustness of guardrails in text-to-image models and benchmark their resilience against adversarial attacks.
Related papers
- CROPS: Model-Agnostic Training-Free Framework for Safe Image Synthesis with Latent Diffusion Models [13.799517170191919]
Recent research has shown that safety checkers have vulnerabilities against adversarial attacks, allowing them to generate Not Safe For Work (NSFW) images.
We propose CROPS, a model-agnostic framework that easily defends against adversarial attacks generating NSFW images without requiring additional training.
arXiv Detail & Related papers (2025-01-09T16:43:21Z) - Text-Guided Attention is All You Need for Zero-Shot Robustness in Vision-Language Models [64.67721492968941]
We propose a Text-Guided Attention for Zero-Shot Robustness (TGA-ZSR) framework.
Our goal is to maintain the generalization of the CLIP model and enhance its adversarial robustness.
Our method yields a 9.58% enhancement in zero-shot robust accuracy over the current state-of-the-art techniques.
arXiv Detail & Related papers (2024-10-29T07:15:09Z) - Transferable Adversarial Attacks on SAM and Its Downstream Models [87.23908485521439]
This paper explores the feasibility of adversarial attacking various downstream models fine-tuned from the segment anything model (SAM)
To enhance the effectiveness of the adversarial attack towards models fine-tuned on unknown datasets, we propose a universal meta-initialization (UMI) algorithm.
arXiv Detail & Related papers (2024-10-26T15:04:04Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
We propose a novel, yet elegantly simple approach for detecting adversarial samples in Vision-Language Models.
Our method leverages Text-to-Image (T2I) models to generate images based on captions produced by target VLMs.
Empirical evaluations conducted on different datasets validate the efficacy of our approach.
arXiv Detail & Related papers (2024-06-13T15:55:04Z) - Defending Large Language Models Against Attacks With Residual Stream Activation Analysis [0.0]
Large Language Models (LLMs) are vulnerable to adversarial threats.
This paper presents an innovative defensive strategy, given white box access to an LLM.
We apply a novel methodology for analyzing distinctive activation patterns in the residual streams for attack prompt classification.
arXiv Detail & Related papers (2024-06-05T13:06:33Z) - ART: Automatic Red-teaming for Text-to-Image Models to Protect Benign Users [18.3621509910395]
We propose a novel Automatic Red-Teaming framework, ART, to evaluate the safety risks of text-to-image models.
With our comprehensive experiments, we reveal the toxicity of the popular open-source text-to-image models.
We also introduce three large-scale red-teaming datasets for studying the safety risks associated with text-to-image models.
arXiv Detail & Related papers (2024-05-24T07:44:27Z) - Groot: Adversarial Testing for Generative Text-to-Image Models with
Tree-based Semantic Transformation [16.79414725225863]
adversarial testing techniques have been developed to probe whether such models can be prompted to produce Not-Safe-For-Work (NSFW) content.
We introduce Groot, the first automated framework leveraging tree-based semantic transformation for adversarial testing of text-to-image models.
Our comprehensive evaluation confirms the efficacy of Groot, which not only exceeds the performance of current state-of-the-art approaches but also achieves a remarkable success rate (93.66%) on leading text-to-image models.
arXiv Detail & Related papers (2024-02-19T12:31:56Z) - SA-Attack: Improving Adversarial Transferability of Vision-Language
Pre-training Models via Self-Augmentation [56.622250514119294]
In contrast to white-box adversarial attacks, transfer attacks are more reflective of real-world scenarios.
We propose a self-augment-based transfer attack method, termed SA-Attack.
arXiv Detail & Related papers (2023-12-08T09:08:50Z) - In and Out-of-Domain Text Adversarial Robustness via Label Smoothing [64.66809713499576]
We study the adversarial robustness provided by various label smoothing strategies in foundational models for diverse NLP tasks.
Our experiments show that label smoothing significantly improves adversarial robustness in pre-trained models like BERT, against various popular attacks.
We also analyze the relationship between prediction confidence and robustness, showing that label smoothing reduces over-confident errors on adversarial examples.
arXiv Detail & Related papers (2022-12-20T14:06:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.