Stratified Non-Negative Tensor Factorization
- URL: http://arxiv.org/abs/2411.18805v1
- Date: Wed, 27 Nov 2024 23:16:00 GMT
- Title: Stratified Non-Negative Tensor Factorization
- Authors: Alexander Sietsema, Zerrin Vural, James Chapman, Yotam Yaniv, Deanna Needell,
- Abstract summary: Stratified-NTF can identify interpretable topics with lower memory requirements than Stratified-NMF.
We develop a multiplicative update rule and demonstrate the method on text and image data.
- Score: 45.439685980328605
- License:
- Abstract: Non-negative matrix factorization (NMF) and non-negative tensor factorization (NTF) decompose non-negative high-dimensional data into non-negative low-rank components. NMF and NTF methods are popular for their intrinsic interpretability and effectiveness on large-scale data. Recent work developed Stratified-NMF, which applies NMF to regimes where data may come from different sources (strata) with different underlying distributions, and seeks to recover both strata-dependent information and global topics shared across strata. Applying Stratified-NMF to multi-modal data requires flattening across modes, and therefore loses geometric structure contained implicitly within the tensor. To address this problem, we extend Stratified-NMF to the tensor setting by developing a multiplicative update rule and demonstrating the method on text and image data. We find that Stratified-NTF can identify interpretable topics with lower memory requirements than Stratified-NMF. We also introduce a regularized version of the method and demonstrate its effects on image data.
Related papers
- Coseparable Nonnegative Tensor Factorization With T-CUR Decomposition [2.013220890731494]
Nonnegative Matrix Factorization (NMF) is an important unsupervised learning method to extract meaningful features from data.
In this work, we provide an alternating selection method to select the coseparable core.
The results demonstrate the efficiency of coseparable NTF when compared to coseparable NMF.
arXiv Detail & Related papers (2024-01-30T09:22:37Z) - Stratified-NMF for Heterogeneous Data [8.174199227297514]
We propose a modified NMF objective, Stratified-NMF, that simultaneously learns strata-dependent statistics and a shared topics matrix.
We apply our method to three real world datasets and empirically investigate their learned features.
arXiv Detail & Related papers (2023-11-17T00:34:41Z) - Multi-View Clustering via Semi-non-negative Tensor Factorization [120.87318230985653]
We develop a novel multi-view clustering based on semi-non-negative tensor factorization (Semi-NTF)
Our model directly considers the between-view relationship and exploits the between-view complementary information.
In addition, we provide an optimization algorithm for the proposed method and prove mathematically that the algorithm always converges to the stationary KKT point.
arXiv Detail & Related papers (2023-03-29T14:54:19Z) - Adaptive Weighted Nonnegative Matrix Factorization for Robust Feature
Representation [9.844796520630522]
Nonnegative matrix factorization (NMF) has been widely used to dimensionality reduction in machine learning.
Traditional NMF does not properly handle outliers, so that it is sensitive to noise.
This paper proposes an adaptive weighted NMF, which introduces weights to emphasize the different importance of each data point.
arXiv Detail & Related papers (2022-06-07T05:27:08Z) - Finding Rule-Interpretable Non-Negative Data Representation [1.2430809884830318]
We present a version of the NMF approach that merges rule-based descriptions with advantages of part-based representation.
In addition to revealing important attributes for latent factors, their interaction and value ranges, this approach allows performing focused embedding.
arXiv Detail & Related papers (2022-06-03T10:20:46Z) - SymNMF-Net for The Symmetric NMF Problem [62.44067422984995]
We propose a neural network called SymNMF-Net for the Symmetric NMF problem.
We show that the inference of each block corresponds to a single iteration of the optimization.
Empirical results on real-world datasets demonstrate the superiority of our SymNMF-Net.
arXiv Detail & Related papers (2022-05-26T08:17:39Z) - Log-based Sparse Nonnegative Matrix Factorization for Data
Representation [55.72494900138061]
Nonnegative matrix factorization (NMF) has been widely studied in recent years due to its effectiveness in representing nonnegative data with parts-based representations.
We propose a new NMF method with log-norm imposed on the factor matrices to enhance the sparseness.
A novel column-wisely sparse norm, named $ell_2,log$-(pseudo) norm, is proposed to enhance the robustness of the proposed method.
arXiv Detail & Related papers (2022-04-22T11:38:10Z) - Feature Weighted Non-negative Matrix Factorization [92.45013716097753]
We propose the Feature weighted Non-negative Matrix Factorization (FNMF) in this paper.
FNMF learns the weights of features adaptively according to their importances.
It can be solved efficiently with the suggested optimization algorithm.
arXiv Detail & Related papers (2021-03-24T21:17:17Z) - Ordinal Non-negative Matrix Factorization for Recommendation [9.431454966446076]
We introduce a new non-negative matrix factorization (NMF) method for ordinal data, called OrdNMF.
OrdNMF is a latent factor model that generalizes Bernoulli-Poisson factorization (BePoF) and Poisson factorization (PF) applied to binarized data.
arXiv Detail & Related papers (2020-06-01T16:02:11Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
Conditional normalizing flows (CNFs) are efficient in sampling and inference.
We present a study of CNFs where the base density to output space mapping is conditioned on an input x, to model conditional densities p(y|x)
arXiv Detail & Related papers (2019-11-29T19:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.