One-Step Early Stopping Strategy using Neural Tangent Kernel Theory and Rademacher Complexity
- URL: http://arxiv.org/abs/2411.18806v1
- Date: Wed, 27 Nov 2024 23:22:28 GMT
- Title: One-Step Early Stopping Strategy using Neural Tangent Kernel Theory and Rademacher Complexity
- Authors: Daniel Martin Xavier, Ludovic Chamoin, Jawher Jerray, Laurent Fribourg,
- Abstract summary: The early stopping strategy consists in stopping the training process of a neural network (NN) on a set $S$ of input data before training error is minimal.
We give here an analytical estimation of the optimal stopping time involving basically the initial training error vector and the eigenvalues of the neural tangent kernel''
- Score: 0.0
- License:
- Abstract: The early stopping strategy consists in stopping the training process of a neural network (NN) on a set $S$ of input data before training error is minimal. The advantage is that the NN then retains good generalization properties, i.e. it gives good predictions on data outside $S$, and a good estimate of the statistical error (``population loss'') is obtained. We give here an analytical estimation of the optimal stopping time involving basically the initial training error vector and the eigenvalues of the ``neural tangent kernel''. This yields an upper bound on the population loss which is well-suited to the underparameterized context (where the number of parameters is moderate compared with the number of data). Our method is illustrated on the example of an NN simulating the MPC control of a Van der Pol oscillator.
Related papers
- Gradient Descent Finds Over-Parameterized Neural Networks with Sharp Generalization for Nonparametric Regression [19.988762532185884]
We show that, if the neural network is trained by GD with early stopping, then the trained network renders a sharp rate of nonparametric regression risk.
$cO(eps_n2)$ is the same rate as that for the classical kernel regression trained by GD with early stopping.
arXiv Detail & Related papers (2024-11-05T08:43:54Z) - Finding Lottery Tickets in Vision Models via Data-driven Spectral Foresight Pruning [14.792099973449794]
We propose an algorithm to align the training dynamics of the sparse network with that of the dense one.
We show how the usually neglected data-dependent component in the NTK's spectrum can be taken into account.
Path eXclusion (PX) is able to find lottery tickets even at high sparsity levels.
arXiv Detail & Related papers (2024-06-03T22:19:42Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
We show that when the data distribution is well-separated, DNNs can achieve Bayes-optimal test error for classification.
Our results indicate that interpolating with smoother functions leads to better generalization.
arXiv Detail & Related papers (2023-05-30T19:37:44Z) - Joint Edge-Model Sparse Learning is Provably Efficient for Graph Neural
Networks [89.28881869440433]
This paper provides the first theoretical characterization of joint edge-model sparse learning for graph neural networks (GNNs)
It proves analytically that both sampling important nodes and pruning neurons with the lowest-magnitude can reduce the sample complexity and improve convergence without compromising the test accuracy.
arXiv Detail & Related papers (2023-02-06T16:54:20Z) - Sample-Then-Optimize Batch Neural Thompson Sampling [50.800944138278474]
We introduce two algorithms for black-box optimization based on the Thompson sampling (TS) policy.
To choose an input query, we only need to train an NN and then choose the query by maximizing the trained NN.
Our algorithms sidestep the need to invert the large parameter matrix yet still preserve the validity of the TS policy.
arXiv Detail & Related papers (2022-10-13T09:01:58Z) - Bounding the Width of Neural Networks via Coupled Initialization -- A
Worst Case Analysis [121.9821494461427]
We show how to significantly reduce the number of neurons required for two-layer ReLU networks.
We also prove new lower bounds that improve upon prior work, and that under certain assumptions, are best possible.
arXiv Detail & Related papers (2022-06-26T06:51:31Z) - A Kernel-Expanded Stochastic Neural Network [10.837308632004644]
Deep neural network often gets trapped into a local minimum in training.
New kernel-expanded neural network (K-StoNet) model reformulates the network as a latent variable model.
Model can be easily trained using the imputationregularized optimization (IRO) algorithm.
arXiv Detail & Related papers (2022-01-14T06:42:42Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
We introduce the importance of guided gradient descent (IGSGD) method to train inference from inputs containing missing values without imputation.
We employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation.
Our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
arXiv Detail & Related papers (2021-07-05T12:44:39Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
Modern machine learning models often employ a huge number of parameters and are typically optimized to have zero training loss.
We examine how these benign overfitting phenomena occur in a two-layer neural network setting.
We show that it is possible for the two-layer ReLU network interpolator to achieve a near minimax-optimal learning rate.
arXiv Detail & Related papers (2021-06-06T19:08:53Z) - Rapid Risk Minimization with Bayesian Models Through Deep Learning
Approximation [9.93116974480156]
We introduce a novel combination of Bayesian Models (BMs) and Neural Networks (NNs) for making predictions with a minimum expected risk.
Our approach combines the data efficiency and interpretability of a BM with the speed of a NN.
We achieve risk minimized predictions significantly faster than standard methods with a negligible loss on the testing dataset.
arXiv Detail & Related papers (2021-03-29T15:08:25Z) - Regularization Matters: A Nonparametric Perspective on Overparametrized
Neural Network [20.132432350255087]
Overparametrized neural networks trained by tangent descent (GD) can provably overfit any training data.
This paper studies how well overparametrized neural networks can recover the true target function in the presence of random noises.
arXiv Detail & Related papers (2020-07-06T01:02:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.