NeuroLifting: Neural Inference on Markov Random Fields at Scale
- URL: http://arxiv.org/abs/2411.18954v1
- Date: Thu, 28 Nov 2024 06:50:47 GMT
- Title: NeuroLifting: Neural Inference on Markov Random Fields at Scale
- Authors: Yaomin Wang, Chaolong Ying, Xiaodong Luo, Tianshu Yu,
- Abstract summary: Inference in large-scale Markov Random Fields (MRFs) is a critical yet challenging task.
This paper introduces NeuroLifting, a novel technique that leverages Graph Neural Networks (GNNs) to re parameterize decision variables in MRFs.
By extending traditional lifting techniques into a non-parametric neural network framework, NeuroLifting benefits from the smooth loss landscape of neural networks.
- Score: 14.042164101688682
- License:
- Abstract: Inference in large-scale Markov Random Fields (MRFs) is a critical yet challenging task, traditionally approached through approximate methods like belief propagation and mean field, or exact methods such as the Toulbar2 solver. These strategies often fail to strike an optimal balance between efficiency and solution quality, particularly as the problem scale increases. This paper introduces NeuroLifting, a novel technique that leverages Graph Neural Networks (GNNs) to reparameterize decision variables in MRFs, facilitating the use of standard gradient descent optimization. By extending traditional lifting techniques into a non-parametric neural network framework, NeuroLifting benefits from the smooth loss landscape of neural networks, enabling efficient and parallelizable optimization. Empirical results demonstrate that, on moderate scales, NeuroLifting performs very close to the exact solver Toulbar2 in terms of solution quality, significantly surpassing existing approximate methods. Notably, on large-scale MRFs, NeuroLifting delivers superior solution quality against all baselines, as well as exhibiting linear computational complexity growth. This work presents a significant advancement in MRF inference, offering a scalable and effective solution for large-scale problems.
Related papers
- Improving Generalization of Deep Neural Networks by Optimum Shifting [33.092571599896814]
We propose a novel method called emphoptimum shifting, which changes the parameters of a neural network from a sharp minimum to a flatter one.
Our method is based on the observation that when the input and output of a neural network are fixed, the matrix multiplications within the network can be treated as systems of under-determined linear equations.
arXiv Detail & Related papers (2024-05-23T02:31:55Z) - Optimization Over Trained Neural Networks: Taking a Relaxing Walk [4.517039147450688]
We propose a more scalable solver based on exploring global and local linear relaxations of the neural network model.
Our solver is competitive with a state-of-the-art MILP solver and the prior while producing better solutions with increases in input, depth, and number of neurons.
arXiv Detail & Related papers (2024-01-07T11:15:00Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
We present Layer-wise Feedback Propagation (LFP), a novel training principle for neural network-like predictors.
LFP decomposes a reward to individual neurons based on their respective contributions to solving a given task.
Our method then implements a greedy approach reinforcing helpful parts of the network and weakening harmful ones.
arXiv Detail & Related papers (2023-08-23T10:48:28Z) - MISNN: Multiple Imputation via Semi-parametric Neural Networks [9.594714330925703]
Multiple imputation (MI) has been widely applied to missing value problems in biomedical, social and econometric research.
We propose MISNN, a novel and efficient algorithm that incorporates feature selection for MI.
arXiv Detail & Related papers (2023-05-02T21:45:36Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
We introduce a novel approach to deploy large-scale Deep Neural Networks on constrained resources.
The method speeds up inference time and aims to reduce memory demand and power consumption.
arXiv Detail & Related papers (2022-12-25T15:40:05Z) - Non-Gradient Manifold Neural Network [79.44066256794187]
Deep neural network (DNN) generally takes thousands of iterations to optimize via gradient descent.
We propose a novel manifold neural network based on non-gradient optimization.
arXiv Detail & Related papers (2021-06-15T06:39:13Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.