FiRe: Fixed-points of Restoration Priors for Solving Inverse Problems
- URL: http://arxiv.org/abs/2411.18970v1
- Date: Thu, 28 Nov 2024 07:40:16 GMT
- Title: FiRe: Fixed-points of Restoration Priors for Solving Inverse Problems
- Authors: Matthieu Terris, Ulugbek S. Kamilov, Thomas Moreau,
- Abstract summary: Implicit priors based on denoising neural networks have become central to widely-used frameworks such as Plug-and-Play algorithms.
We introduce Fixed-points of Restoration (FiRe) priors as a new framework for expanding the notion of priors in.
to general restoration models beyond traditional denoising models.
- Score: 11.441644020200549
- License:
- Abstract: Selecting an appropriate prior to compensate for information loss due to the measurement operator is a fundamental challenge in imaging inverse problems. Implicit priors based on denoising neural networks have become central to widely-used frameworks such as Plug-and-Play (PnP) algorithms. In this work, we introduce Fixed-points of Restoration (FiRe) priors as a new framework for expanding the notion of priors in PnP to general restoration models beyond traditional denoising models. The key insight behind FiRe is that natural images emerge as fixed points of the composition of a degradation operator with the corresponding restoration model. This enables us to derive an explicit formula for our implicit prior by quantifying invariance of images under this composite operation. Adopting this fixed-point perspective, we show how various restoration networks can effectively serve as priors for solving inverse problems. The FiRe framework further enables ensemble-like combinations of multiple restoration models as well as acquisition-informed restoration networks, all within a unified optimization approach. Experimental results validate the effectiveness of FiRe across various inverse problems, establishing a new paradigm for incorporating pretrained restoration models into PnP-like algorithms.
Related papers
- EnsIR: An Ensemble Algorithm for Image Restoration via Gaussian Mixture Models [70.60381055741391]
Image restoration challenges related to illposed problems, resulting in deviations between single model predictions and ground-truths.
Ensemble learning aims to address these deviations by combining the predictions of multiple base models.
We employ an expectation (EM)-based algorithm to estimate ensemble weights for prediction candidates.
Our algorithm is model-agnostic and training-free, allowing seamless integration and enhancement of various pre-trained image restoration models.
arXiv Detail & Related papers (2024-10-30T12:16:35Z) - PRISTA-Net: Deep Iterative Shrinkage Thresholding Network for Coded
Diffraction Patterns Phase Retrieval [6.982256124089]
Phase retrieval is a challenge nonlinear inverse problem in computational imaging and image processing.
We have developed PRISTA-Net, a deep unfolding network based on the first-order iterative threshold threshold algorithm (ISTA)
All parameters in the proposed PRISTA-Net framework, including the nonlinear transformation, threshold, and step size, are learned-to-end instead of being set.
arXiv Detail & Related papers (2023-09-08T07:37:15Z) - JPEG Artifact Correction using Denoising Diffusion Restoration Models [110.1244240726802]
We build upon Denoising Diffusion Restoration Models (DDRM) and propose a method for solving some non-linear inverse problems.
We leverage the pseudo-inverse operator used in DDRM and generalize this concept for other measurement operators.
arXiv Detail & Related papers (2022-09-23T23:47:00Z) - REPNP: Plug-and-Play with Deep Reinforcement Learning Prior for Robust
Image Restoration [30.966005373669027]
We propose a novel deep reinforcement learning (DRL) based framework dubbed RePNP.
Results demonstrate that the proposed RePNP is robust to the observation model used in the.
scheme dubbed RePNP.
RePNP achieves better results subjective to model deviation with fewer model parameters.
arXiv Detail & Related papers (2022-07-25T10:56:10Z) - Variational Deep Image Restoration [20.195082841065947]
This paper presents a new variational inference framework for image restoration and a convolutional neural network (CNN) structure that can solve the restoration problems described by the proposed framework.
Specifically, our method delivers state-of-the-art performance on Gaussian denoising, real-world noise reduction, blind image super-resolution, and JPEG compression artifacts reduction.
arXiv Detail & Related papers (2022-07-03T16:32:15Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) is an efficient, unsupervised posterior sampling method.
We demonstrate DDRM's versatility on several image datasets for super-resolution, deblurring, inpainting, and colorization.
arXiv Detail & Related papers (2022-01-27T20:19:07Z) - End-to-end reconstruction meets data-driven regularization for inverse
problems [2.800608984818919]
We propose an unsupervised approach for learning end-to-end reconstruction operators for ill-posed inverse problems.
The proposed method combines the classical variational framework with iterative unrolling.
We demonstrate with the example of X-ray computed tomography (CT) that our approach outperforms state-of-the-art unsupervised methods.
arXiv Detail & Related papers (2021-06-07T12:05:06Z) - Plug-and-Play external and internal priors for image restoration [0.0]
We propose a new algorithm for image restoration based on a deep denoiser acting on the image.
We prove the effectiveness of the proposed method in restoring noisy images, both in simulated real medical settings.
arXiv Detail & Related papers (2021-02-15T12:19:28Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
Single image super-resolution (SISR) has been greatly revitalized by the recent development of convolutional neural networks (CNN)
This paper provides a new insight on conventional SISR algorithm, and proposes a substantially different approach relying on the iterative optimization.
A novel iterative super-resolution network (ISRN) is proposed on top of the iterative optimization.
arXiv Detail & Related papers (2020-05-20T11:11:47Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
We propose a joint low-rank deep (LRD) image model, which contains a pair of complementaryly trip priors.
We then propose a novel hybrid plug-and-play framework based on the LRD model for image CS.
To make the optimization tractable, a simple yet effective algorithm is proposed to solve the proposed H-based image CS problem.
arXiv Detail & Related papers (2020-05-16T08:17:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.