Integration of Contextual Descriptors in Ontology Alignment for Enrichment of Semantic Correspondence
- URL: http://arxiv.org/abs/2411.19113v1
- Date: Thu, 28 Nov 2024 12:59:32 GMT
- Title: Integration of Contextual Descriptors in Ontology Alignment for Enrichment of Semantic Correspondence
- Authors: Eduard Manziuk, Oleksander Barmak, Pavlo Radiuk, Vladislav Kuznetsov, Iurii Krak, Sergiy Yakovlev,
- Abstract summary: A formalization was developed that enables the integration of essential and contextual descriptors to create a comprehensive knowledge model.
The hierarchical structure of the semantic approach and the mathematical apparatus for analyzing potential conflicts between concepts are demonstrated.
- Score: 13.69268253901738
- License:
- Abstract: This paper proposes a novel approach to semantic ontology alignment using contextual descriptors. A formalization was developed that enables the integration of essential and contextual descriptors to create a comprehensive knowledge model. The hierarchical structure of the semantic approach and the mathematical apparatus for analyzing potential conflicts between concepts, particularly in the example of "Transparency" and "Privacy" in the context of artificial intelligence, are demonstrated. Experimental studies showed a significant improvement in ontology alignment metrics after the implementation of contextual descriptors, especially in the areas of privacy, responsibility, and freedom & autonomy. The application of contextual descriptors achieved an average overall improvement of approximately 4.36%. The results indicate the effectiveness of the proposed approach for more accurately reflecting the complexity of knowledge and its contextual dependence.
Related papers
- Architectural Fusion Through Contextual Partitioning in Large Language Models: A Novel Approach to Parameterized Knowledge Integration [0.0]
This paper introduces an innovative approach to enhancing the architectural design of large-scale computational models through the dynamic segmentation of parameters into context-aware regions.
Experimental evaluations demonstrate substantial improvements in accuracy, perplexity, and contextual coherence across a variety of linguistic tasks.
The findings collectively demonstrate the potential for Contextual Partitioning to redefine the scalability and adaptability of computational language architectures in diverse and complex domains.
arXiv Detail & Related papers (2025-01-22T14:21:04Z) - Independence Constrained Disentangled Representation Learning from Epistemological Perspective [13.51102815877287]
Disentangled Representation Learning aims to improve the explainability of deep learning methods by training a data encoder that identifies semantically meaningful latent variables in the data generation process.
There is no consensus regarding the objective of disentangled representation learning.
We propose a novel method for disentangled representation learning by employing an integration of mutual information constraint and independence constraint.
arXiv Detail & Related papers (2024-09-04T13:00:59Z) - Neural Sequence-to-Sequence Modeling with Attention by Leveraging Deep Learning Architectures for Enhanced Contextual Understanding in Abstractive Text Summarization [0.0]
This paper presents a novel framework for abstractive TS of single documents.
It integrates three dominant aspects: structure, semantic, and neural-based approaches.
Results indicate significant improvements in handling rare and OOV words.
arXiv Detail & Related papers (2024-04-08T18:33:59Z) - An Encoding of Abstract Dialectical Frameworks into Higher-Order Logic [57.24311218570012]
This approach allows for the computer-assisted analysis of abstract dialectical frameworks.
Exemplary applications include the formal analysis and verification of meta-theoretical properties.
arXiv Detail & Related papers (2023-12-08T09:32:26Z) - Syntax-Informed Interactive Model for Comprehensive Aspect-Based
Sentiment Analysis [0.0]
We introduce an innovative model: Syntactic Dependency Enhanced Multi-Task Interaction Architecture (SDEMTIA) for comprehensive ABSA.
Our approach innovatively exploits syntactic knowledge (dependency relations and types) using a specialized Syntactic Dependency Embedded Interactive Network (SDEIN)
We also incorporate a novel and efficient message-passing mechanism within a multi-task learning framework to bolster learning efficacy.
arXiv Detail & Related papers (2023-11-28T16:03:22Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
The ability of text embedding models to generalize across a wide range of syntactic contexts remains under-explored.
Our findings reveal that existing text embedding models have not sufficiently addressed these syntactic understanding challenges.
We propose strategies to augment the generalization ability of text embedding models in diverse syntactic scenarios.
arXiv Detail & Related papers (2023-11-14T08:51:00Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
We propose a knowledge graph augmented network (KGAN) to incorporate external knowledge with explicitly syntactic and contextual information.
KGAN captures the sentiment feature representations from multiple perspectives, i.e., context-, syntax- and knowledge-based.
Experiments on three popular ABSA benchmarks demonstrate the effectiveness and robustness of our KGAN.
arXiv Detail & Related papers (2022-01-13T08:25:53Z) - A Comparative Study on Structural and Semantic Properties of Sentence
Embeddings [77.34726150561087]
We propose a set of experiments using a widely-used large-scale data set for relation extraction.
We show that different embedding spaces have different degrees of strength for the structural and semantic properties.
These results provide useful information for developing embedding-based relation extraction methods.
arXiv Detail & Related papers (2020-09-23T15:45:32Z) - Improving Machine Reading Comprehension with Contextualized Commonsense
Knowledge [62.46091695615262]
We aim to extract commonsense knowledge to improve machine reading comprehension.
We propose to represent relations implicitly by situating structured knowledge in a context.
We employ a teacher-student paradigm to inject multiple types of contextualized knowledge into a student machine reader.
arXiv Detail & Related papers (2020-09-12T17:20:01Z) - Natural language technology and query expansion: issues,
state-of-the-art and perspectives [0.0]
Linguistic characteristics that cause ambiguity and misinterpretation of queries as well as additional factors affect the users ability to accurately represent their information needs.
We lay down the anatomy of a generic linguistic based query expansion framework and propose its module-based decomposition.
For each of the modules we review the state-of-the-art solutions in the literature and categorized under the light of the techniques used.
arXiv Detail & Related papers (2020-04-23T11:39:07Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
We propose a novel dependency syntactic knowledge augmented interactive architecture with multi-task learning for end-to-end ABSA.
This model is capable of fully exploiting the syntactic knowledge (dependency relations and types) by leveraging a well-designed Dependency Relation Embedded Graph Convolutional Network (DreGcn)
Extensive experimental results on three benchmark datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-04T14:59:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.