Co-Learning: Towards Semi-Supervised Object Detection with Road-side Cameras
- URL: http://arxiv.org/abs/2411.19143v1
- Date: Thu, 28 Nov 2024 13:42:55 GMT
- Title: Co-Learning: Towards Semi-Supervised Object Detection with Road-side Cameras
- Authors: Jicheng Yuan, Anh Le-Tuan, Ali Ganbarov, Manfred Hauswirth, Danh Le-Phuoc,
- Abstract summary: Semi-supervised learning (SSL) can train object detectors using labeled and unlabeled data.
SSL faces several challenges, including pseudo-target inconsistencies, disharmony between classification and regression tasks, and efficient use of abundant unlabeled data.
We develop a teacher-student-based SSL framework, Co-Learning, which employs mutual learning and annotation-alignment strategies to adeptly navigate these complexities.
- Score: 1.5495593104596401
- License:
- Abstract: Recently, deep learning has experienced rapid expansion, contributing significantly to the progress of supervised learning methodologies. However, acquiring labeled data in real-world settings can be costly, labor-intensive, and sometimes scarce. This challenge inhibits the extensive use of neural networks for practical tasks due to the impractical nature of labeling vast datasets for every individual application. To tackle this, semi-supervised learning (SSL) offers a promising solution by using both labeled and unlabeled data to train object detectors, potentially enhancing detection efficacy and reducing annotation costs. Nevertheless, SSL faces several challenges, including pseudo-target inconsistencies, disharmony between classification and regression tasks, and efficient use of abundant unlabeled data, especially on edge devices, such as roadside cameras. Thus, we developed a teacher-student-based SSL framework, Co-Learning, which employs mutual learning and annotation-alignment strategies to adeptly navigate these complexities and achieves comparable performance as fully-supervised solutions using 10\% labeled data.
Related papers
- Multi-Label Contrastive Learning : A Comprehensive Study [48.81069245141415]
Multi-label classification has emerged as a key area in both research and industry.
Applying contrastive learning to multi-label classification presents unique challenges.
We conduct an in-depth study of contrastive learning loss for multi-label classification across diverse settings.
arXiv Detail & Related papers (2024-11-27T20:20:06Z) - Context-Aware Predictive Coding: A Representation Learning Framework for WiFi Sensing [0.0]
WiFi sensing is an emerging technology that utilizes wireless signals for various sensing applications.
In this paper, we introduce a novel SSL framework called Context-Aware Predictive Coding (CAPC)
CAPC effectively learns from unlabelled data and adapts to diverse environments.
Our evaluations demonstrate that CAPC not only outperforms other SSL methods and supervised approaches, but also achieves superior generalization capabilities.
arXiv Detail & Related papers (2024-09-16T17:59:49Z) - Semi-Supervised Object Detection: A Survey on Progress from CNN to Transformer [12.042768320132694]
This paper presents a review of 27 cutting-edge developments in semi-supervised learning for object detection.
It covers data augmentation techniques, pseudo-labeling strategies, consistency regularization, and adversarial training methods.
We aim to ignite further research interest in overcoming existing challenges and exploring new directions in semi-supervised learning for object detection.
arXiv Detail & Related papers (2024-07-11T12:58:13Z) - FlexSSL : A Generic and Efficient Framework for Semi-Supervised Learning [19.774959310191623]
We develop a generic and efficient learning framework called FlexSSL.
We show that FlexSSL can consistently enhance the performance of semi-supervised learning algorithms.
arXiv Detail & Related papers (2023-12-28T08:31:56Z) - Does Decentralized Learning with Non-IID Unlabeled Data Benefit from
Self Supervision? [51.00034621304361]
We study decentralized learning with unlabeled data through the lens of self-supervised learning (SSL)
We study the effectiveness of contrastive learning algorithms under decentralized learning settings.
arXiv Detail & Related papers (2022-10-20T01:32:41Z) - Evaluating the Label Efficiency of Contrastive Self-Supervised Learning
for Multi-Resolution Satellite Imagery [0.0]
Self-supervised learning has been applied in the remote sensing domain to exploit readily-available unlabeled data.
In this paper, we study self-supervised visual representation learning through the lens of label efficiency.
arXiv Detail & Related papers (2022-10-13T06:54:13Z) - Collaborative Intelligence Orchestration: Inconsistency-Based Fusion of
Semi-Supervised Learning and Active Learning [60.26659373318915]
Active learning (AL) and semi-supervised learning (SSL) are two effective, but often isolated, means to alleviate the data-hungry problem.
We propose an innovative Inconsistency-based virtual aDvErial algorithm to further investigate SSL-AL's potential superiority.
Two real-world case studies visualize the practical industrial value of applying and deploying the proposed data sampling algorithm.
arXiv Detail & Related papers (2022-06-07T13:28:43Z) - Open-Set Semi-Supervised Learning for 3D Point Cloud Understanding [62.17020485045456]
It is commonly assumed in semi-supervised learning (SSL) that the unlabeled data are drawn from the same distribution as that of the labeled ones.
We propose to selectively utilize unlabeled data through sample weighting, so that only conducive unlabeled data would be prioritized.
arXiv Detail & Related papers (2022-05-02T16:09:17Z) - ORDisCo: Effective and Efficient Usage of Incremental Unlabeled Data for
Semi-supervised Continual Learning [52.831894583501395]
Continual learning assumes the incoming data are fully labeled, which might not be applicable in real applications.
We propose deep Online Replay with Discriminator Consistency (ORDisCo) to interdependently learn a classifier with a conditional generative adversarial network (GAN)
We show ORDisCo achieves significant performance improvement on various semi-supervised learning benchmark datasets for SSCL.
arXiv Detail & Related papers (2021-01-02T09:04:14Z) - Adversarial Self-Supervised Learning for Semi-Supervised 3D Action
Recognition [123.62183172631443]
We present Adversarial Self-Supervised Learning (ASSL), a novel framework that tightly couples SSL and the semi-supervised scheme.
Specifically, we design an effective SSL scheme to improve the discrimination capability of learned representations for 3D action recognition.
arXiv Detail & Related papers (2020-07-12T08:01:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.