Universal approximation of continuous functions with minimal quantum circuits
- URL: http://arxiv.org/abs/2411.19152v1
- Date: Thu, 28 Nov 2024 13:52:43 GMT
- Title: Universal approximation of continuous functions with minimal quantum circuits
- Authors: Adrián Pérez-Salinas, Mahtab Yaghubi Rad, Alice Barthe, Vedran Dunjko,
- Abstract summary: We provide a constructive method to approximate arbitrary multivariate functions using just a single qubit and a fixed-generator parametrization.<n>We also prove universality for a few of alternative fixed encoding strategies which may have independent interest.
- Score: 1.1999555634662633
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The conventional paradigm of quantum computing is discrete: it utilizes discrete sets of gates to realize bitstring-to-bitstring mappings, some of them arguably intractable for classical computers. In parameterized quantum approaches, widely used in quantum optimization and quantum machine learning, the input becomes continuous and the output represents real-valued functions. Various strategies exist to encode the input into a quantum circuit. While the bitstring-to-bitstring universality of quantum computers is quite well understood, basic questions remained open in the continuous case. For example, it was proven that full multivariate function universality requires either (i) a fixed encoding procedure with a number of qubits scaling as the dimension of the input or (ii) a tunable encoding procedure in single-qubit circuits. This reveals a trade-off between the complexity of the data encoding and the qubit requirements. The question of whether universality can be reached with a fixed encoding and constantly many qubits has been open for the last five years. In this paper, we answer this remaining fundamental question in the affirmative. We provide a constructive method to approximate arbitrary multivariate functions using just a single qubit and a fixed-generator parametrization, at the expense of increasing the depth. We also prove universality for a few of alternative fixed encoding strategies which may have independent interest. Our results rely on a combination of techniques from harmonic analysis and quantum signal processing.
Related papers
- Minimally Universal Parity Quantum Computing [0.559239450391449]
In parity quantum computing, multi-qubit logical gates are implemented by single-qubit rotations on a suitably encoded state involving auxiliary qubits.
Here, we demonstrate that the answer is one, if the number of logical qubits is even, and two otherwise.
This leads to a variety of different universal parity gate sets corresponding to different numbers of auxiliary qubits.
arXiv Detail & Related papers (2025-04-04T16:05:34Z) - Experimental Demonstration of Logical Magic State Distillation [62.77974948443222]
We present the experimental realization of magic state distillation with logical qubits on a neutral-atom quantum computer.
Our approach makes use of a dynamically reconfigurable architecture to encode and perform quantum operations on many logical qubits in parallel.
arXiv Detail & Related papers (2024-12-19T18:38:46Z) - Realization of quantum algorithms with qudits [0.7892577704654171]
We review several ideas indicating how multilevel quantum systems, also known as qudits, can be used for efficient realization of quantum algorithms.
We focus on techniques of leveraging qudits for simplifying decomposition of multiqubit gates, and for compressing quantum information by encoding multiple qubits in a single qudit.
These theoretical schemes can be implemented with quantum computing platforms of various nature, such as trapped ions, neutral atoms, superconducting junctions, and quantum light.
arXiv Detail & Related papers (2023-11-20T18:34:19Z) - Determining the ability for universal quantum computing: Testing
controllability via dimensional expressivity [39.58317527488534]
Controllability tests can be used in the design of quantum devices to reduce the number of external controls.
We devise a hybrid quantum-classical algorithm based on a parametrized quantum circuit.
arXiv Detail & Related papers (2023-08-01T15:33:41Z) - Automated Quantum Oracle Synthesis with a Minimal Number of Qubits [0.6299766708197883]
We present two methods for automatic quantum oracle synthesis.
One method uses a minimal number of qubits, while the other preserves the function domain values while also minimizing the overall required number of qubits.
arXiv Detail & Related papers (2023-04-07T20:12:13Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Fault-tolerant circuit synthesis for universal fault-tolerant quantum
computing [0.0]
We present a quantum circuit synthesis algorithm for implementing universal fault-tolerant quantum computing based on geometricd codes.
We show how to synthesize the set of universal fault-tolerant protocols for $[[7,1,3]]$ Steane code and the syndrome measurement protocol of $[[23, 1, 7]]$ Golay code.
arXiv Detail & Related papers (2022-06-06T15:43:36Z) - Efficient realization of quantum algorithms with qudits [0.70224924046445]
We propose a technique for an efficient implementation of quantum algorithms with multilevel quantum systems (qudits)
Our method uses a transpilation of a circuit in the standard qubit form, which depends on the parameters of a qudit-based processor.
We provide an explicit scheme of transpiling qubit circuits into sequences of single-qudit and two-qudit gates taken from a particular universal set.
arXiv Detail & Related papers (2021-11-08T11:09:37Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.