Lost & Found: Updating Dynamic 3D Scene Graphs from Egocentric Observations
- URL: http://arxiv.org/abs/2411.19162v1
- Date: Thu, 28 Nov 2024 14:05:07 GMT
- Title: Lost & Found: Updating Dynamic 3D Scene Graphs from Egocentric Observations
- Authors: Tjark Behrens, René Zurbrügg, Marc Pollefeys, Zuria Bauer, Hermann Blum,
- Abstract summary: Static semantic maps are unable to capture interactions between the environment and humans or robotic agents.
We present an approach that addresses this limitation. Based solely on egocentric recordings, we are able to track the 6DoF poses of the moving object.
We show how our method allows to command a mobile manipulator through teach & repeat, and how information about prior interaction allows a mobile manipulator to retrieve an object hidden in a drawer.
- Score: 44.14584011692035
- License:
- Abstract: Recent approaches have successfully focused on the segmentation of static reconstructions, thereby equipping downstream applications with semantic 3D understanding. However, the world in which we live is dynamic, characterized by numerous interactions between the environment and humans or robotic agents. Static semantic maps are unable to capture this information, and the naive solution of rescanning the environment after every change is both costly and ineffective in tracking e.g. objects being stored away in drawers. With Lost & Found we present an approach that addresses this limitation. Based solely on egocentric recordings with corresponding hand position and camera pose estimates, we are able to track the 6DoF poses of the moving object within the detected interaction interval. These changes are applied online to a transformable scene graph that captures object-level relations. Compared to state-of-the-art object pose trackers, our approach is more reliable in handling the challenging egocentric viewpoint and the lack of depth information. It outperforms the second-best approach by 34% and 56% for translational and orientational error, respectively, and produces visibly smoother 6DoF object trajectories. In addition, we illustrate how the acquired interaction information in the dynamic scene graph can be employed in the context of robotic applications that would otherwise be unfeasible: We show how our method allows to command a mobile manipulator through teach & repeat, and how information about prior interaction allows a mobile manipulator to retrieve an object hidden in a drawer. Code, videos and corresponding data are accessible at https://behretj.github.io/LostAndFound.
Related papers
- Articulated Object Manipulation using Online Axis Estimation with SAM2-Based Tracking [59.87033229815062]
Articulated object manipulation requires precise object interaction, where the object's axis must be carefully considered.
Previous research employed interactive perception for manipulating articulated objects, but typically, open-loop approaches often suffer from overlooking the interaction dynamics.
We present a closed-loop pipeline integrating interactive perception with online axis estimation from segmented 3D point clouds.
arXiv Detail & Related papers (2024-09-24T17:59:56Z) - ROAM: Robust and Object-Aware Motion Generation Using Neural Pose
Descriptors [73.26004792375556]
This paper shows that robustness and generalisation to novel scene objects in 3D object-aware character synthesis can be achieved by training a motion model with as few as one reference object.
We leverage an implicit feature representation trained on object-only datasets, which encodes an SE(3)-equivariant descriptor field around the object.
We demonstrate substantial improvements in 3D virtual character motion and interaction quality and robustness to scenarios with unseen objects.
arXiv Detail & Related papers (2023-08-24T17:59:51Z) - InterTracker: Discovering and Tracking General Objects Interacting with
Hands in the Wild [40.489171608114574]
Existing methods rely on frame-based detectors to locate interacting objects.
We propose to leverage hand-object interaction to track interactive objects.
Our proposed method outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2023-08-06T09:09:17Z) - BundleSDF: Neural 6-DoF Tracking and 3D Reconstruction of Unknown
Objects [89.2314092102403]
We present a near real-time method for 6-DoF tracking of an unknown object from a monocular RGBD video sequence.
Our method works for arbitrary rigid objects, even when visual texture is largely absent.
arXiv Detail & Related papers (2023-03-24T17:13:49Z) - Estimating 3D Motion and Forces of Human-Object Interactions from
Internet Videos [49.52070710518688]
We introduce a method to reconstruct the 3D motion of a person interacting with an object from a single RGB video.
Our method estimates the 3D poses of the person together with the object pose, the contact positions and the contact forces on the human body.
arXiv Detail & Related papers (2021-11-02T13:40:18Z) - D3D-HOI: Dynamic 3D Human-Object Interactions from Videos [49.38319295373466]
We introduce D3D-HOI: a dataset of monocular videos with ground truth annotations of 3D object pose, shape and part motion during human-object interactions.
Our dataset consists of several common articulated objects captured from diverse real-world scenes and camera viewpoints.
We leverage the estimated 3D human pose for more accurate inference of the object spatial layout and dynamics.
arXiv Detail & Related papers (2021-08-19T00:49:01Z) - "What's This?" -- Learning to Segment Unknown Objects from Manipulation
Sequences [27.915309216800125]
We present a novel framework for self-supervised grasped object segmentation with a robotic manipulator.
We propose a single, end-to-end trainable architecture which jointly incorporates motion cues and semantic knowledge.
Our method neither depends on any visual registration of a kinematic robot or 3D object models, nor on precise hand-eye calibration or any additional sensor data.
arXiv Detail & Related papers (2020-11-06T10:55:28Z) - Hindsight for Foresight: Unsupervised Structured Dynamics Models from
Physical Interaction [24.72947291987545]
Key challenge for an agent learning to interact with the world is to reason about physical properties of objects.
We propose a novel approach for modeling the dynamics of a robot's interactions directly from unlabeled 3D point clouds and images.
arXiv Detail & Related papers (2020-08-02T11:04:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.