Cross-Spectral Attention for Unsupervised RGB-IR Face Verification and Person Re-identification
- URL: http://arxiv.org/abs/2411.19215v1
- Date: Thu, 28 Nov 2024 15:38:15 GMT
- Title: Cross-Spectral Attention for Unsupervised RGB-IR Face Verification and Person Re-identification
- Authors: Kshitij Nikhal, Cedric Nimpa Fondje, Benjamin S. Riggan,
- Abstract summary: Cross-spectral biometrics, such as matching imagery of faces or persons from visible (RGB) and infrared (IR) bands, have rapidly advanced over the last decade.
We propose a novel unsupervised cross-spectral framework that combines (1) a new pseudo triplet loss with cross-spectral voting, (2) a new cross-spectral attention network leveraging multiple subspaces, and (3) structured sparsity to perform more discriminative cross-spectral clustering.
- Score: 1.6768151308423365
- License:
- Abstract: Cross-spectral biometrics, such as matching imagery of faces or persons from visible (RGB) and infrared (IR) bands, have rapidly advanced over the last decade due to increasing sensitivity, size, quality, and ubiquity of IR focal plane arrays and enhanced analytics beyond the visible spectrum. Current techniques for mitigating large spectral disparities between RGB and IR imagery often include learning a discriminative common subspace by exploiting precisely curated data acquired from multiple spectra. Although there are challenges with determining robust architectures for extracting common information, a critical limitation for supervised methods is poor scalability in terms of acquiring labeled data. Therefore, we propose a novel unsupervised cross-spectral framework that combines (1) a new pseudo triplet loss with cross-spectral voting, (2) a new cross-spectral attention network leveraging multiple subspaces, and (3) structured sparsity to perform more discriminative cross-spectral clustering. We extensively compare our proposed RGB-IR biometric learning framework (and its individual components) with recent and previous state-of-the-art models on two challenging benchmark datasets: DEVCOM Army Research Laboratory Visible-Thermal Face Dataset (ARL-VTF) and RegDB person re-identification dataset, and, in some cases, achieve performance superior to completely supervised methods.
Related papers
- Bringing RGB and IR Together: Hierarchical Multi-Modal Enhancement for Robust Transmission Line Detection [67.02804741856512]
We propose a novel Hierarchical Multi-Modal Enhancement Network (HMMEN) that integrates RGB and IR data for robust and accurate TL detection.
Our method introduces two key components: (1) a Mutual Multi-Modal Enhanced Block (MMEB), which fuses and enhances hierarchical RGB and IR feature maps in a coarse-to-fine manner, and (2) a Feature Alignment Block (FAB) that corrects misalignments between decoder outputs and IR feature maps by leveraging deformable convolutions.
arXiv Detail & Related papers (2025-01-25T06:21:06Z) - Spectral Enhancement and Pseudo-Anchor Guidance for Infrared-Visible Person Re-Identification [8.054546048450414]
This paper introduces a simple yet effective Spectral Enhancement and Pseudo-anchor Guidance Network, named SEPG-Net.
We propose a more homogeneous spectral enhancement scheme based on frequency domain information and greyscale space.
Experimental results on two public benchmark datasets demonstrate the superior performance of SEPG-Net against other state-of-the-art methods.
arXiv Detail & Related papers (2024-12-26T08:03:53Z) - Optimizing Multispectral Object Detection: A Bag of Tricks and Comprehensive Benchmarks [49.84182981950623]
Multispectral object detection, utilizing RGB and TIR (thermal infrared) modalities, is widely recognized as a challenging task.
It requires not only the effective extraction of features from both modalities and robust fusion strategies, but also the ability to address issues such as spectral discrepancies.
We introduce an efficient and easily deployable multispectral object detection framework that can seamlessly optimize high-performing single-modality models.
arXiv Detail & Related papers (2024-11-27T12:18:39Z) - Flare-Aware Cross-modal Enhancement Network for Multi-spectral Vehicle
Re-identification [29.48387524901101]
In harsh environments, the discnative cues in RGB and NIR modalities are often lost due to strong flares from vehicle lamps or sunlight.
We propose a Flare-Aware Cross-modal Enhancement Network that adaptively restores flare-corrupted RGB and NIR features with guidance from the flareimmunized thermal infrared spectrum.
arXiv Detail & Related papers (2023-05-23T04:04:24Z) - Efficient Bilateral Cross-Modality Cluster Matching for Unsupervised Visible-Infrared Person ReID [56.573905143954015]
We propose a novel bilateral cluster matching-based learning framework to reduce the modality gap by matching cross-modality clusters.
Under such a supervisory signal, a Modality-Specific and Modality-Agnostic (MSMA) contrastive learning framework is proposed to align features jointly at a cluster-level.
Experiments on the public SYSU-MM01 and RegDB datasets demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2023-05-22T03:27:46Z) - Exploring Invariant Representation for Visible-Infrared Person
Re-Identification [77.06940947765406]
Cross-spectral person re-identification, which aims to associate identities to pedestrians across different spectra, faces a main challenge of the modality discrepancy.
In this paper, we address the problem from both image-level and feature-level in an end-to-end hybrid learning framework named robust feature mining network (RFM)
Experiment results on two standard cross-spectral person re-identification datasets, RegDB and SYSU-MM01, have demonstrated state-of-the-art performance.
arXiv Detail & Related papers (2023-02-02T05:24:50Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
This study addresses the issue of fusing infrared and visible images that appear differently for object detection.
Previous approaches discover commons underlying the two modalities and fuse upon the common space either by iterative optimization or deep networks.
This paper proposes a bilevel optimization formulation for the joint problem of fusion and detection, and then unrolls to a target-aware Dual Adversarial Learning (TarDAL) network for fusion and a commonly used detection network.
arXiv Detail & Related papers (2022-03-30T11:44:56Z) - Hierarchical Deep CNN Feature Set-Based Representation Learning for
Robust Cross-Resolution Face Recognition [59.29808528182607]
Cross-resolution face recognition (CRFR) is important in intelligent surveillance and biometric forensics.
Existing shallow learning-based and deep learning-based methods focus on mapping the HR-LR face pairs into a joint feature space.
In this study, we desire to fully exploit the multi-level deep convolutional neural network (CNN) feature set for robust CRFR.
arXiv Detail & Related papers (2021-03-25T14:03:42Z) - There and Back Again: Self-supervised Multispectral Correspondence
Estimation [13.56924750612194]
We introduce a novel cycle-consistency metric that allows us to self-supervise. This, combined with our spectra-agnostic loss functions, allows us to train the same network across multiple spectra.
We demonstrate our approach on the challenging task of dense RGB-FIR correspondence estimation.
arXiv Detail & Related papers (2021-03-19T12:33:56Z) - SFANet: A Spectrum-aware Feature Augmentation Network for
Visible-Infrared Person Re-Identification [12.566284647658053]
We propose a novel spectrum-aware feature augementation network named SFANet for cross-modality matching problem.
Learning with grayscale-spectrum images, our model can apparently reduce modality discrepancy and detect inner structure relations.
In feature-level, we improve the conventional two-stream network through balancing the number of specific and sharable convolutional blocks.
arXiv Detail & Related papers (2021-02-24T08:57:32Z) - Cross-Spectrum Dual-Subspace Pairing for RGB-infrared Cross-Modality
Person Re-Identification [15.475897856494583]
Conventional person re-identification can only handle RGB color images, which will fail at dark conditions.
RGB-infrared ReID (also known as Infrared-Visible ReID or Visible-Thermal ReID) is proposed.
In this paper, a novel multi-spectrum image generation method is proposed and the generated samples are utilized to help the network to find discriminative information.
arXiv Detail & Related papers (2020-02-29T09:01:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.