Enhanced Lieb-Robinson bounds for commuting long-range interactions
- URL: http://arxiv.org/abs/2411.19241v2
- Date: Mon, 09 Dec 2024 15:28:21 GMT
- Title: Enhanced Lieb-Robinson bounds for commuting long-range interactions
- Authors: Marius Lemm, Tom Wessel,
- Abstract summary: We show the intricate effect of long-range interactions on information transport in quantum many-body systems.
Part of our motivation stems from quantum error-correcting codes.
- Score: 0.0
- License:
- Abstract: Recent works have revealed the intricate effect of long-range interactions on information transport in quantum many-body systems: In $D$ spatial dimensions, interactions decaying as a power-law $r^{-\alpha}$ with $\alpha > 2D+1$ exhibit a Lieb-Robinson bound (LRB) with a linear light cone and the threshold $2D+1$ is sharp in general. Here, we observe that mutually commuting, long-range interactions satisfy an enhanced LRB of the form $t \, r^{-\alpha}$ for any $\alpha > 0$. In particular, the linear light cone occurs at $\alpha = 1$ in any dimension. Part of our motivation stems from quantum error-correcting codes. As applications, we derive enhanced bounds on ground state correlations and an enhanced local perturbations perturb locally (LPPL) principle for which we adapt a recent subharmonicity argument of Wang-Hazzard. Similar enhancements hold for commuting interactions with stretched exponential decay.
Related papers
- Improved Algorithm for Adversarial Linear Mixture MDPs with Bandit
Feedback and Unknown Transition [71.33787410075577]
We study reinforcement learning with linear function approximation, unknown transition, and adversarial losses.
We propose a new algorithm that attains an $widetildeO(dsqrtHS3K + sqrtHSAK)$ regret with high probability.
arXiv Detail & Related papers (2024-03-07T15:03:50Z) - Entanglement Entropy Growth in Disordered Spin Chains with Tunable Range
Interactions [0.0]
We study the effect of bond randomness in long-range interacting spin chains on the quantum quench dynamics.
For $alphaalpha_c$, we find that the entanglement entropy grows as a power-law with time.
arXiv Detail & Related papers (2023-03-04T13:27:56Z) - Ion Trap Long-Range XY Model for Quantum State Transfer and Optimal
Spatial Search [0.5249805590164902]
Linear ion trap chains are a promising platform for quantum computation and simulation.
Lower $alpha$ leads to longer range interactions, allowing faster long-range gate operations for quantum computing.
We show how to correct for this effect completely, allowing lower $alpha$ interactions to be coherently implemented.
arXiv Detail & Related papers (2022-06-28T01:28:51Z) - A Law of Robustness beyond Isoperimetry [84.33752026418045]
We prove a Lipschitzness lower bound $Omega(sqrtn/p)$ of robustness of interpolating neural network parameters on arbitrary distributions.
We then show the potential benefit of overparametrization for smooth data when $n=mathrmpoly(d)$.
We disprove the potential existence of an $O(1)$-Lipschitz robust interpolating function when $n=exp(omega(d))$.
arXiv Detail & Related papers (2022-02-23T16:10:23Z) - Near-Optimal No-Regret Learning for Correlated Equilibria in
Multi-Player General-Sum Games [104.74734408204749]
We show that if all agents in a multi-player general-sum normal-form game employ Optimistic Multiplicative Weights Update (OMWU), the external regret of every player is $O(textrmpolylog(T))$ after $T$ repetitions of the game.
We extend their result from external regret to internal regret and swap regret, thereby establishing uncoupled learning dynamics that converge to an approximate correlated equilibrium.
arXiv Detail & Related papers (2021-11-11T01:19:53Z) - Optimal Frobenius light cone in spin chains with power-law interactions [0.0]
We show an optimal Frobenius light cone" obeying $tsim rmin(alpha-1,1)$ for $alpha>1$ in one-dimensional power-law interacting systems.
We construct an explicit random Hamiltonian protocol that saturates the bound and settles the optimal Frobenius light cone in one dimension.
arXiv Detail & Related papers (2021-05-20T18:00:03Z) - Variance-Aware Confidence Set: Variance-Dependent Bound for Linear
Bandits and Horizon-Free Bound for Linear Mixture MDP [76.94328400919836]
We show how to construct variance-aware confidence sets for linear bandits and linear mixture Decision Process (MDP)
For linear bandits, we obtain an $widetildeO(mathrmpoly(d)sqrt1 + sum_i=1Ksigma_i2) regret bound, where $d is the feature dimension.
For linear mixture MDP, we obtain an $widetildeO(mathrmpoly(d)sqrtK)$ regret bound, where
arXiv Detail & Related papers (2021-01-29T18:57:52Z) - Nearly Minimax Optimal Reinforcement Learning for Linear Mixture Markov
Decision Processes [91.38793800392108]
We study reinforcement learning with linear function approximation where the underlying transition probability kernel of the Markov decision process (MDP) is a linear mixture model.
We propose a new, computationally efficient algorithm with linear function approximation named $textUCRL-VTR+$ for the aforementioned linear mixture MDPs.
To the best of our knowledge, these are the first computationally efficient, nearly minimax optimal algorithms for RL with linear function approximation.
arXiv Detail & Related papers (2020-12-15T18:56:46Z) - Spin squeezing with short-range spin-exchange interactions [0.0]
We investigate many-body spin squeezing dynamics in an XXZ model with interactions that fall off with distance $r$ as $1/ralpha$ in $D=2$ and $3$ spatial dimensions.
A region of "collective" behavior in which optimal squeezing grows with system size extends all the way to the $alphatoinfty$ limit of nearest-neighbor interactions.
arXiv Detail & Related papers (2020-06-01T05:11:12Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z) - Hierarchy of linear light cones with long-range interactions [0.4643589635376552]
In quantum many-body systems, quantum information and entanglement cannot spread outside of a linear light cone.
In one spatial dimension, this linear light cone exists for every many-body state when $alpha>3$ (Lieb-Robinson light cone)
We show that universal quantum state transfer, as well as many-body quantum chaos, are bounded by the Frobenius light cone.
arXiv Detail & Related papers (2020-01-30T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.