OMuleT: Orchestrating Multiple Tools for Practicable Conversational Recommendation
- URL: http://arxiv.org/abs/2411.19352v2
- Date: Wed, 01 Jan 2025 00:03:24 GMT
- Title: OMuleT: Orchestrating Multiple Tools for Practicable Conversational Recommendation
- Authors: Se-eun Yoon, Xiaokai Wei, Yexi Jiang, Rachit Pareek, Frank Ong, Kevin Gao, Julian McAuley, Michelle Gong,
- Abstract summary: We present a systematic effort to design, evaluate, and implement a realistic conversational recommender system (CRS)
The objective of our system is to allow users to input free-form text to request recommendations, and then receive a list of relevant and diverse items.
We propose a novel approach that equips large language models (LLMs) with over 10 tools, providing them access to the internal knowledge base and API calls used in production.
- Score: 16.19266229218955
- License:
- Abstract: In this paper, we present a systematic effort to design, evaluate, and implement a realistic conversational recommender system (CRS). The objective of our system is to allow users to input free-form text to request recommendations, and then receive a list of relevant and diverse items. While previous work on synthetic queries augments large language models (LLMs) with 1-3 tools, we argue that a more extensive toolbox is necessary to effectively handle real user requests. As such, we propose a novel approach that equips LLMs with over 10 tools, providing them access to the internal knowledge base and API calls used in production. We evaluate our model on a dataset of real users and show that it generates relevant, novel, and diverse recommendations compared to vanilla LLMs. Furthermore, we conduct ablation studies to demonstrate the effectiveness of using the full range of tools in our toolbox. We share our designs and lessons learned from deploying the system for internal alpha release. Our contribution is the addressing of all four key aspects of a practicable CRS: (1) real user requests, (2) augmenting LLMs with a wide variety of tools, (3) extensive evaluation, and (4) deployment insights.
Related papers
- Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain (ATC) is a framework that enables the large language models (LLMs) to act as a multi-tool user.
To scale up the scope of the tools, we next propose a black-box probing method.
For a comprehensive evaluation, we build a challenging benchmark named ToolFlow.
arXiv Detail & Related papers (2024-05-26T11:40:58Z) - Towards Completeness-Oriented Tool Retrieval for Large Language Models [60.733557487886635]
Real-world systems often incorporate a wide array of tools, making it impractical to input all tools into Large Language Models.
Existing tool retrieval methods primarily focus on semantic matching between user queries and tool descriptions.
We propose a novel modelagnostic COllaborative Learning-based Tool Retrieval approach, COLT, which captures not only the semantic similarities between user queries and tool descriptions but also takes into account the collaborative information of tools.
arXiv Detail & Related papers (2024-05-25T06:41:23Z) - Let Me Do It For You: Towards LLM Empowered Recommendation via Tool Learning [57.523454568002144]
Large language models (LLMs) have shown capabilities in commonsense reasoning and leveraging external tools.
We introduce ToolRec, a framework for LLM-empowered recommendations via tool learning.
We formulate the recommendation process as a process aimed at exploring user interests in attribute granularity.
We consider two types of attribute-oriented tools: rank tools and retrieval tools.
arXiv Detail & Related papers (2024-05-24T00:06:54Z) - Look Before You Leap: Towards Decision-Aware and Generalizable Tool-Usage for Large Language Models [26.28459880766842]
We propose a decision-aware and generalizable tool-usage framework (DEER)
Specifically, we first construct the tool-usage samples with multiple decision branches via an automatic generation pipeline.
Our proposed DEER is effective and significantly outperforms baselines across various datasets.
arXiv Detail & Related papers (2024-02-26T16:11:03Z) - EASYTOOL: Enhancing LLM-based Agents with Concise Tool Instruction [56.02100384015907]
EasyTool is a framework transforming diverse and lengthy tool documentation into a unified and concise tool instruction.
It can significantly reduce token consumption and improve the performance of tool utilization in real-world scenarios.
arXiv Detail & Related papers (2024-01-11T15:45:11Z) - MetaTool Benchmark for Large Language Models: Deciding Whether to Use Tools and Which to Use [79.87054552116443]
Large language models (LLMs) have garnered significant attention due to their impressive natural language processing (NLP) capabilities.
We introduce MetaTool, a benchmark designed to evaluate whether LLMs have tool usage awareness and can correctly choose tools.
We conduct experiments involving eight popular LLMs and find that the majority of them still struggle to effectively select tools.
arXiv Detail & Related papers (2023-10-04T19:39:26Z) - Confucius: Iterative Tool Learning from Introspection Feedback by
Easy-to-Difficult Curriculum [42.36892453363961]
We propose a novel tool learning framework to train large language models (LLMs) to use complicated tools in real-world scenarios.
We first propose a multi-stage learning method to teach the LLM to use various tools from an easy-to-difficult curriculum.
We then propose the Iterative Self-instruct from Introspective Feedback to dynamically construct the dataset to improve the ability to use the complicated tool.
arXiv Detail & Related papers (2023-08-27T07:53:00Z) - ToolLLM: Facilitating Large Language Models to Master 16000+ Real-world
APIs [104.37772295581088]
Open-source large language models (LLMs), e.g., LLaMA, remain significantly limited in tool-use capabilities.
We introduce ToolLLM, a general tool-usetuning encompassing data construction, model training, and evaluation.
We first present ToolBench, an instruction-tuning framework for tool use, which is constructed automatically using ChatGPT.
arXiv Detail & Related papers (2023-07-31T15:56:53Z) - GPT4Tools: Teaching Large Language Model to Use Tools via
Self-instruction [41.36474802204914]
GPT4Tools is based on self-instruct to enable open-source LLMs, such as LLaMA and OPT, to use tools.
It generates an instruction-following dataset by prompting an advanced teacher with various multi-modal contexts.
arXiv Detail & Related papers (2023-05-30T05:27:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.