Autocorrelation Matters: Understanding the Role of Initialization Schemes for State Space Models
- URL: http://arxiv.org/abs/2411.19455v1
- Date: Fri, 29 Nov 2024 03:55:19 GMT
- Title: Autocorrelation Matters: Understanding the Role of Initialization Schemes for State Space Models
- Authors: Fusheng Liu, Qianxiao Li,
- Abstract summary: Current methods for initializing state space model (SSM) parameters rely on the HiPPO framework.
We take a further step to investigate the roles of SSM schemes by considering the autocorrelation of input sequences.
We show that the imaginary part of the eigenvalues of the SSM state matrix determines the conditioning of SSM optimization problems.
- Score: 14.932318540666547
- License:
- Abstract: Current methods for initializing state space model (SSM) parameters primarily rely on the HiPPO framework \citep{gu2023how}, which is based on online function approximation with the SSM kernel basis. However, the HiPPO framework does not explicitly account for the effects of the temporal structures of input sequences on the optimization of SSMs. In this paper, we take a further step to investigate the roles of SSM initialization schemes by considering the autocorrelation of input sequences. Specifically, we: (1) rigorously characterize the dependency of the SSM timescale on sequence length based on sequence autocorrelation; (2) find that with a proper timescale, allowing a zero real part for the eigenvalues of the SSM state matrix mitigates the curse of memory while still maintaining stability at initialization; (3) show that the imaginary part of the eigenvalues of the SSM state matrix determines the conditioning of SSM optimization problems, and uncover an approximation-estimation tradeoff when training SSMs with a specific class of target functions.
Related papers
- On the Expressiveness and Length Generalization of Selective State-Space Models on Regular Languages [56.22289522687125]
Selective state-space models (SSMs) are an emerging alternative to the Transformer.
We analyze their expressiveness and length generalization performance on regular language tasks.
We introduce the Selective Dense State-Space Model (SD-SSM), the first selective SSM that exhibits perfect length generalization.
arXiv Detail & Related papers (2024-12-26T20:53:04Z) - Deep Learning-based Approaches for State Space Models: A Selective Review [15.295157876811066]
State-space models (SSMs) offer a powerful framework for dynamical system analysis.
This paper provides a selective review of recent advancements in deep neural network-based approaches for SSMs.
arXiv Detail & Related papers (2024-12-15T15:04:35Z) - Mamba-CL: Optimizing Selective State Space Model in Null Space for Continual Learning [54.19222454702032]
Continual Learning aims to equip AI models with the ability to learn a sequence of tasks over time, without forgetting previously learned knowledge.
State Space Models (SSMs) have achieved notable success in computer vision.
We introduce Mamba-CL, a framework that continuously fine-tunes the core SSMs of the large-scale Mamba foundation model.
arXiv Detail & Related papers (2024-11-23T06:36:16Z) - Provable Benefits of Complex Parameterizations for Structured State Space Models [51.90574950170374]
Structured state space models (SSMs) are linear dynamical systems adhering to a specified structure.
In contrast to typical neural network modules, whose parameterizations are real, SSMs often use complex parameterizations.
This paper takes a step towards explaining the benefits of complex parameterizations for SSMs by establishing formal gaps between real and complex diagonal SSMs.
arXiv Detail & Related papers (2024-10-17T22:35:50Z) - HiPPO-Prophecy: State-Space Models can Provably Learn Dynamical Systems in Context [0.5416466085090772]
This work explores the in-context learning capabilities of State Space Models (SSMs)
We introduce a novel weight construction for SSMs, enabling them to predict the next state of any dynamical system.
We extend the HiPPO framework to demonstrate that continuous SSMs can approximate the derivative of any input signal.
arXiv Detail & Related papers (2024-07-12T15:56:11Z) - Short-Long Convolutions Help Hardware-Efficient Linear Attention to Focus on Long Sequences [60.489682735061415]
We propose CHELA, which replaces state space models with short-long convolutions and implements linear attention in a divide-and-conquer manner.
Our experiments on the Long Range Arena benchmark and language modeling tasks demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-06-12T12:12:38Z) - SMR: State Memory Replay for Long Sequence Modeling [19.755738298836526]
This paper proposes a novel non-recursive non-uniform sample processing strategy to overcome compatibility limitations in parallel convolutional computation.
We introduce State Memory Replay (SMR), which utilizes learnable memories to adjust the current state with multi-step information for generalization at sampling points different from those in the training data.
Experiments on long-range modeling tasks in autoregressive language modeling and Long Range Arena demonstrate the general effectiveness of the SMR mechanism for a series of SSM models.
arXiv Detail & Related papers (2024-05-27T17:53:32Z) - HOPE for a Robust Parameterization of Long-memory State Space Models [51.66430224089725]
State-space models (SSMs) that utilize linear, time-invariant (LTI) systems are known for their effectiveness in learning long sequences.
We develop a new parameterization scheme, called HOPE, for LTI systems that utilize Markov parameters within Hankel operators.
Our new parameterization endows the SSM with non-decaying memory within a fixed time window, which is empirically corroborated by a sequential CIFAR-10 task with padded noise.
arXiv Detail & Related papers (2024-05-22T20:20:14Z) - From Generalization Analysis to Optimization Designs for State Space Models [14.932318540666547]
A State Space Model (SSM) is a foundation model in time series analysis.
We propose improvements to training algorithms based on the generalization results.
arXiv Detail & Related papers (2024-05-04T13:58:03Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
We show how (discrete-time) Lyapunov stability theory can serve as a powerful tool to aid, or even lead, in the analysis (and potential design) of optimization algorithms that are not necessarily gradient-based.
The particular ML problem that this paper focuses on is that of parameter estimation in an incomplete-data Bayesian framework via the popular optimization algorithm known as maximum a posteriori expectation-maximization (MAP-EM)
We show that fast convergence (linear or quadratic) is achieved, which could have been difficult to unveil without our adopted S&C approach.
arXiv Detail & Related papers (2020-06-23T01:34:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.