Look Every Frame All at Once: Video-Ma$^2$mba for Efficient Long-form Video Understanding with Multi-Axis Gradient Checkpointing
- URL: http://arxiv.org/abs/2411.19460v1
- Date: Fri, 29 Nov 2024 04:12:13 GMT
- Title: Look Every Frame All at Once: Video-Ma$^2$mba for Efficient Long-form Video Understanding with Multi-Axis Gradient Checkpointing
- Authors: Hosu Lee, Junho Kim, Hyunjun Kim, Yong Man Ro,
- Abstract summary: Video-Ma$2$mba is a novel architecture that incorporates State Space Models (SSMs) within the Mamba-2 framework.
Our approach significantly reduces the memory footprint compared to standard gradient checkpointing.
By maintaining a detailed capture of temporal dynamics, our model improves the accuracy and relevance of responses in long video understanding tasks.
- Score: 52.050036778325094
- License:
- Abstract: With the growing scale and complexity of video data, efficiently processing long video sequences poses significant challenges due to the quadratic increase in memory and computational demands associated with existing transformer-based Large Multi-modal Models (LMMs). To address these issues, we introduce Video-Ma$^2$mba, a novel architecture that incorporates State Space Models (SSMs) within the Mamba-2 framework, replacing the attention mechanisms. This allows the LMMs to scale linearly in terms of time and memory requirements, making it feasible to handle long-duration video content. Furthermore, we enhance the memory efficiency introducing the Multi-Axis Gradient Checkpointing (MA-GC) method, which strategically manages memory by retaining only essential activations across multiple computational axes. Our approach significantly reduces the memory footprint compared to standard gradient checkpointing. Empirical analyses show that Video-Ma$^2$mba can process extensive video sequences-equivalent to millions of tokens or over two hours of continuous sequences at 1 FPS-on a single GPU. By maintaining a detailed capture of temporal dynamics, our model improves the accuracy and relevance of responses in long video understanding tasks, demonstrating substantial advantages over existing frameworks.
Related papers
- ReWind: Understanding Long Videos with Instructed Learnable Memory [8.002949551539297]
Vision-Language Models (VLMs) are crucial for applications requiring integrated understanding textual and visual information.
We introduce ReWind, a novel memory-based VLM designed for efficient long video understanding while preserving temporal fidelity.
We empirically demonstrate ReWind's superior performance in visual question answering (VQA) and temporal grounding tasks, surpassing previous methods on long video benchmarks.
arXiv Detail & Related papers (2024-11-23T13:23:22Z) - AdaCM$^2$: On Understanding Extremely Long-Term Video with Adaptive Cross-Modality Memory Reduction [10.579335027350263]
AdaCM$2$ is an adaptive cross-modality memory reduction approach to video-text alignment on video streams.
It achieves a 4.5% improvement across multiple tasks in the LVU dataset with a GPU memory consumption reduction of up to 65%.
arXiv Detail & Related papers (2024-11-19T18:04:13Z) - LiVOS: Light Video Object Segmentation with Gated Linear Matching [116.58237547253935]
LiVOS is a lightweight memory network that employs linear matching via linear attention.
For longer and higher-resolution videos, it matched STM-based methods with 53% less GPU memory and supports 4096p inference on a 32G consumer-grade GPU.
arXiv Detail & Related papers (2024-11-05T05:36:17Z) - VideoLLaMB: Long-context Video Understanding with Recurrent Memory Bridges [42.555895949250704]
VideoLLaMB is a novel framework that utilizes temporal memory tokens within bridge layers to allow for the encoding of entire video sequences.
SceneTilling algorithm segments videos into independent semantic units to preserve semantic integrity.
In terms of efficiency, VideoLLaMB, trained on 16 frames, supports up to 320 frames on a single Nvidia A100 GPU.
arXiv Detail & Related papers (2024-09-02T08:52:58Z) - MA-LMM: Memory-Augmented Large Multimodal Model for Long-Term Video Understanding [66.56100008577134]
This study focuses on designing an efficient and effective model for long-term video understanding.
We propose to process videos in an online manner and store past video information in a memory bank.
Our model can achieve state-of-the-art performances across multiple datasets.
arXiv Detail & Related papers (2024-04-08T17:59:24Z) - A Simple Recipe for Contrastively Pre-training Video-First Encoders Beyond 16 Frames [57.758863967770594]
We build on the common paradigm of transferring large-scale, image--text models to video via shallow temporal fusion.
We expose two limitations to the approach: (1) decreased spatial capabilities, likely due to poor video--language alignment in standard video datasets, and (2) higher memory consumption, bottlenecking the number of frames that can be processed.
arXiv Detail & Related papers (2023-12-12T16:10:19Z) - MVBench: A Comprehensive Multi-modal Video Understanding Benchmark [63.14000659130736]
We introduce a comprehensive Multi-modal Video understanding Benchmark, namely MVBench.
We first introduce a novel static-to-dynamic method to define these temporal-related tasks.
Then, guided by the task definition, we automatically convert public video annotations into multiple-choice QA to evaluate each task.
arXiv Detail & Related papers (2023-11-28T17:59:04Z) - MeMViT: Memory-Augmented Multiscale Vision Transformer for Efficient
Long-Term Video Recognition [74.35009770905968]
We build a memory-augmented vision transformer that has a temporal support 30x longer than existing models.
MeMViT obtains state-of-the-art results on the AVA, EPIC-Kitchens-100 action classification, and action anticipation datasets.
arXiv Detail & Related papers (2022-01-20T18:59:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.