Training Agents with Weakly Supervised Feedback from Large Language Models
- URL: http://arxiv.org/abs/2411.19547v1
- Date: Fri, 29 Nov 2024 08:47:04 GMT
- Title: Training Agents with Weakly Supervised Feedback from Large Language Models
- Authors: Dihong Gong, Pu Lu, Zelong Wang, Meng Zhou, Xiuqiang He,
- Abstract summary: This paper introduces a novel training method for LLM-based agents using weakly supervised signals from a critic LLM.
Our agents are trained in iterative manner, where they initially generate trajectories through environmental interaction.
Tests on the API-bank dataset show consistent improvement in our agents' capabilities and comparable performance to GPT-4.
- Score: 19.216542820742607
- License:
- Abstract: Large Language Models (LLMs) offer a promising basis for creating agents that can tackle complex tasks through iterative environmental interaction. Existing methods either require these agents to mimic expert-provided trajectories or rely on definitive environmental feedback for reinforcement learning which limits their application to specific scenarios like gaming or code generation. This paper introduces a novel training method for LLM-based agents using weakly supervised signals from a critic LLM, bypassing the need for expert trajectories or definitive feedback. Our agents are trained in iterative manner, where they initially generate trajectories through environmental interaction. Subsequently, a critic LLM selects a subset of good trajectories, which are then used to update the agents, enabling them to generate improved trajectories in the next iteration. Extensive tests on the API-bank dataset show consistent improvement in our agents' capabilities and comparable performance to GPT-4, despite using open-source models with much fewer parameters.
Related papers
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.
However, they still struggle with problems requiring multi-step decision-making and environmental feedback.
We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - SAC-GLAM: Improving Online RL for LLM agents with Soft Actor-Critic and Hindsight Relabeling [29.29604779151457]
This paper presents and studies an adaptation of Soft Actor-Critic and hindsight relabeling to LLM agents.
Our method paves the path towards autotelic LLM agents that learn online but can also outperform on-policy methods in more classic multi-goal RL environments.
arXiv Detail & Related papers (2024-10-16T11:59:27Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
Large language model (LLM) empowered agents are able to solve decision-making problems in the physical world.
Under this model, the LLM Planner navigates a partially observable Markov decision process (POMDP) by iteratively generating language-based subgoals via prompting.
We prove that the pretrained LLM Planner effectively performs Bayesian aggregated imitation learning (BAIL) through in-context learning.
arXiv Detail & Related papers (2024-05-30T09:42:54Z) - EnvGen: Generating and Adapting Environments via LLMs for Training Embodied Agents [65.38474102119181]
We propose EnvGen, a framework to adaptively create training environments.
We train a small RL agent in a mixture of the original and LLM-generated environments.
We find that a small RL agent trained with EnvGen can outperform SOTA methods, including a GPT-4 agent, and learns long-horizon tasks significantly faster.
arXiv Detail & Related papers (2024-03-18T17:51:16Z) - Trial and Error: Exploration-Based Trajectory Optimization for LLM Agents [49.85633804913796]
We present an exploration-based trajectory optimization approach, referred to as ETO.
This learning method is designed to enhance the performance of open LLM agents.
Our experiments on three complex tasks demonstrate that ETO consistently surpasses baseline performance by a large margin.
arXiv Detail & Related papers (2024-03-04T21:50:29Z) - Learning From Failure: Integrating Negative Examples when Fine-tuning Large Language Models as Agents [41.14201835950814]
Large language models (LLMs) have achieved success in acting as agents, which interact with environments through tools such as search engines.
Previous work has first collected interaction trajectories between LLMs and environments, using only trajectories that successfully finished the task to fine-tune smaller models.
We argue that unsuccessful trajectories offer valuable insights, and LLMs can learn from these trajectories through appropriate quality control and fine-tuning strategies.
arXiv Detail & Related papers (2024-02-18T17:10:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.