Learned Random Label Predictions as a Neural Network Complexity Metric
- URL: http://arxiv.org/abs/2411.19640v1
- Date: Fri, 29 Nov 2024 11:52:59 GMT
- Title: Learned Random Label Predictions as a Neural Network Complexity Metric
- Authors: Marlon Becker, Benjamin Risse,
- Abstract summary: We investigate the impact of learning randomly generated labels in parallel to class labels in supervised learning on memorization, model complexity, and generalization in deep neural networks.
Inspired by methods used in fair AI, our approach allows for the unlearning of random labels, preventing the network from memorizing individual samples.
- Score: 0.6577148087211809
- License:
- Abstract: We empirically investigate the impact of learning randomly generated labels in parallel to class labels in supervised learning on memorization, model complexity, and generalization in deep neural networks. To this end, we introduce a multi-head network architecture as an extension of standard CNN architectures. Inspired by methods used in fair AI, our approach allows for the unlearning of random labels, preventing the network from memorizing individual samples. Based on the concept of Rademacher complexity, we first use our proposed method as a complexity metric to analyze the effects of common regularization techniques and challenge the traditional understanding of feature extraction and classification in CNNs. Second, we propose a novel regularizer that effectively reduces sample memorization. However, contrary to the predictions of classical statistical learning theory, we do not observe improvements in generalization.
Related papers
- Neural networks trained with SGD learn distributions of increasing
complexity [78.30235086565388]
We show that neural networks trained using gradient descent initially classify their inputs using lower-order input statistics.
We then exploit higher-order statistics only later during training.
We discuss the relation of DSB to other simplicity biases and consider its implications for the principle of universality in learning.
arXiv Detail & Related papers (2022-11-21T15:27:22Z) - An Information-Theoretic Framework for Supervised Learning [22.280001450122175]
We propose a novel information-theoretic framework with its own notions of regret and sample complexity.
We study the sample complexity of learning from data generated by deep neural networks with ReLU activation units.
We conclude by corroborating our theoretical results with experimental analysis of random single-hidden-layer neural networks.
arXiv Detail & Related papers (2022-03-01T05:58:28Z) - Generalization Error Bounds for Iterative Recovery Algorithms Unfolded
as Neural Networks [6.173968909465726]
We introduce a general class of neural networks suitable for sparse reconstruction from few linear measurements.
By allowing a wide range of degrees of weight-sharing between the layers, we enable a unified analysis for very different neural network types.
arXiv Detail & Related papers (2021-12-08T16:17:33Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - NSL: Hybrid Interpretable Learning From Noisy Raw Data [66.15862011405882]
This paper introduces a hybrid neural-symbolic learning framework, called NSL, that learns interpretable rules from labelled unstructured data.
NSL combines pre-trained neural networks for feature extraction with FastLAS, a state-of-the-art ILP system for rule learning under the answer set semantics.
We demonstrate that NSL is able to learn robust rules from MNIST data and achieve comparable or superior accuracy when compared to neural network and random forest baselines.
arXiv Detail & Related papers (2020-12-09T13:02:44Z) - Compressive Sensing and Neural Networks from a Statistical Learning
Perspective [4.561032960211816]
We present a generalization error analysis for a class of neural networks suitable for sparse reconstruction from few linear measurements.
Under realistic conditions, the generalization error scales only logarithmically in the number of layers, and at most linear in number of measurements.
arXiv Detail & Related papers (2020-10-29T15:05:43Z) - Supervised Learning with First-to-Spike Decoding in Multilayer Spiking
Neural Networks [0.0]
We propose a new supervised learning method that can train multilayer spiking neural networks to solve classification problems.
The proposed learning rule supports multiple spikes fired by hidden neurons, and yet is stable by relying on firstspike responses generated by a deterministic output layer.
We also explore several distinct spike-based encoding strategies in order to form compact representations of input data.
arXiv Detail & Related papers (2020-08-16T15:34:48Z) - Regularizing Class-wise Predictions via Self-knowledge Distillation [80.76254453115766]
We propose a new regularization method that penalizes the predictive distribution between similar samples.
This results in regularizing the dark knowledge (i.e., the knowledge on wrong predictions) of a single network.
Our experimental results on various image classification tasks demonstrate that the simple yet powerful method can significantly improve the generalization ability.
arXiv Detail & Related papers (2020-03-31T06:03:51Z) - AL2: Progressive Activation Loss for Learning General Representations in
Classification Neural Networks [12.14537824884951]
We propose a novel regularization method that progressively penalizes the magnitude of activations during training.
Our method's effect on generalization is analyzed with label randomization tests and cumulative ablations.
arXiv Detail & Related papers (2020-03-07T18:38:46Z) - Understanding Generalization in Deep Learning via Tensor Methods [53.808840694241]
We advance the understanding of the relations between the network's architecture and its generalizability from the compression perspective.
We propose a series of intuitive, data-dependent and easily-measurable properties that tightly characterize the compressibility and generalizability of neural networks.
arXiv Detail & Related papers (2020-01-14T22:26:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.