Quantum computing architecture with Rydberg gates in trapped ions
- URL: http://arxiv.org/abs/2411.19684v1
- Date: Fri, 29 Nov 2024 13:17:43 GMT
- Title: Quantum computing architecture with Rydberg gates in trapped ions
- Authors: Han Bao, Jonas Vogel, Ulrich Poschinger, Ferdinand Schmidt-Kaler,
- Abstract summary: We propose an entangling scheme for arbitrary pairs of ions in a linear crystal.
We reveal order of $mu s$ operation times within any of the qubit pairs in a small crystal.
- Score: 32.098763269499315
- License:
- Abstract: Fast entangling gate operations are a fundamental prerequisite for quantum simulation and computation. We propose an entangling scheme for arbitrary pairs of ions in a linear crystal, harnessing the high electric polarizability of highly excited Rydberg states. An all-to-all quantum gate connectivity is based on an initialization of a pair of ions to a superposition of ground- and Rydberg-states by laser excitation, followed by the entangling gate operation which relies on a state-dependent frequency shift of collective vibrational modes of the crystal. This gate operation requires applying an electric waveform to trap electrodes. Employing transverse collective modes of oscillation, we reveal order of $\mu s$ operation times within any of the qubit pairs in a small crystal. In our calculation, we are taking into account realistic experimental conditions and feasible electric field ramps. The proposed gate operation is ready to be combined with a scalable processor architecture to reconfigure the qubit register, either by shuttling ions or by dynamically controlling optical tweezer potentials.
Related papers
- Two-qubit gate protocols with microwave-dressed Rydberg ions in a linear Paul trap [1.2600261666440378]
We theoretically investigate the performance of three protocols leading to controlled-phase gate operations.
We show how non-adiabatic transitions resulting from fast laser driving relative to the characteristic time scales of the system detrimentally affect gate fidelity.
Overall, this places trapped Rydberg ions into the regime where fast high-accuracy quantum computing and eventually quantum error correction become possible.
arXiv Detail & Related papers (2024-12-18T10:43:54Z) - Scalable architecture for trapped-ion quantum computing using RF traps and dynamic optical potentials [0.0]
In principle there is no fundamental limit to the number of ion-based qubits that can be confined in a single 1D register.
Here we propose a holistic, scalable architecture for quantum computing with large ion-crystals.
We show that these cells behave as nearly independent quantum registers, allowing for parallel entangling gates on all cells.
arXiv Detail & Related papers (2023-11-02T12:06:49Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Trapped Ions as an Architecture for Quantum Computing [110.83289076967895]
We describe one of the most promising platforms for the construction of a universal quantum computer.
We discuss from the physics involved in trapping ions in electromagnetic potentials to the Hamiltonian engineering needed to generate a universal set of logic gates.
arXiv Detail & Related papers (2022-07-23T22:58:50Z) - Robust gate design for large ion crystals through excitation of local
phonon modes [0.0]
We propose a scalable design of entangling quantum gates for large ion crystals.
The gate design is universal and applicable for large ion crystals of arbitrary sizes.
arXiv Detail & Related papers (2022-07-11T02:17:31Z) - Extensible circuit-QED architecture via amplitude- and
frequency-variable microwaves [52.77024349608834]
We introduce a circuit-QED architecture combining fixed-frequency qubits and microwave-driven couplers.
Drive parameters appear as tunable knobs enabling selective two-qubit coupling and coherent-error suppression.
arXiv Detail & Related papers (2022-04-17T22:49:56Z) - Pulsed multireservoir engineering for a trapped ion with applications to
state synthesis and quantum Otto cycles [68.8204255655161]
Reservoir engineering is a remarkable task that takes dissipation and decoherence as tools rather than impediments.
We develop a collisional model to implement reservoir engineering for the one-dimensional harmonic motion of a trapped ion.
Having multiple internal levels, we show that multiple reservoirs can be engineered, allowing for more efficient synthesis of well-known non-classical states of motion.
arXiv Detail & Related papers (2021-11-26T08:32:39Z) - A high-fidelity method for a single-step $N$-bit Toffoli gate in trapped
ions [0.0]
Conditional multi-qubit gates are a key component for elaborate quantum algorithms.
We propose a solution based on adiabatic switching of phonon mediated Ising interactions.
arXiv Detail & Related papers (2020-10-16T16:43:30Z) - Scalable and Parallel Tweezer Gates for Quantum Computing with Long Ion
Strings [1.554996360671779]
We devise methods to implement scalable and parallel entangling gates by using engineered localized phonon modes.
We show that combining our methods with optimal coherent control techniques allows to realize maximally dense universal parallelized quantum circuits.
arXiv Detail & Related papers (2020-08-26T06:01:46Z) - Scalable quantum computation with fast gates in two-dimensional
microtrap arrays of trapped ions [68.8204255655161]
We investigate the use of fast pulsed two-qubit gates for trapped ion quantum computing in a two-dimensional microtrap architecture.
We demonstrate that fast pulsed gates are capable of implementing high-fidelity entangling operations between ions in neighbouring traps faster than the trapping period.
arXiv Detail & Related papers (2020-05-01T13:18:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.