Real-Time Anomaly Detection in Video Streams
- URL: http://arxiv.org/abs/2411.19731v1
- Date: Fri, 29 Nov 2024 14:24:33 GMT
- Title: Real-Time Anomaly Detection in Video Streams
- Authors: Fabien Poirier,
- Abstract summary: This thesis is part of a CIFRE agreement between the company Othello and the LIASD laboratory.
The objective is to develop an artificial intelligence system that can detect real-time dangers in a video stream.
- Score: 0.0
- License:
- Abstract: This thesis is part of a CIFRE agreement between the company Othello and the LIASD laboratory. The objective is to develop an artificial intelligence system that can detect real-time dangers in a video stream. To achieve this, a novel approach combining temporal and spatial analysis has been proposed. Several avenues have been explored to improve anomaly detection by integrating object detection, human pose detection, and motion analysis. For result interpretability, techniques commonly used for image analysis, such as activation and saliency maps, have been extended to videos, and an original method has been proposed. The proposed architecture performs binary or multiclass classification depending on whether an alert or the cause needs to be identified. Numerous neural networkmodels have been tested, and three of them have been selected. You Only Looks Once (YOLO) has been used for spatial analysis, a Convolutional Recurrent Neuronal Network (CRNN) composed of VGG19 and a Gated Recurrent Unit (GRU) for temporal analysis, and a multi-layer perceptron for classification. These models handle different types of data and can be combined in parallel or in series. Although the parallel mode is faster, the serial mode is generally more reliable. For training these models, supervised learning was chosen, and two proprietary datasets were created. The first dataset focuses on objects that may play a potential role in anomalies, while the second consists of videos containing anomalies or non-anomalies. This approach allows for the processing of both continuous video streams and finite videos, providing greater flexibility in detection.
Related papers
- SIGMA:Sinkhorn-Guided Masked Video Modeling [69.31715194419091]
Sinkhorn-guided Masked Video Modelling ( SIGMA) is a novel video pretraining method.
We distribute features of space-time tubes evenly across a limited number of learnable clusters.
Experimental results on ten datasets validate the effectiveness of SIGMA in learning more performant, temporally-aware, and robust video representations.
arXiv Detail & Related papers (2024-07-22T08:04:09Z) - AI-Generated Video Detection via Spatio-Temporal Anomaly Learning [2.1210527985139227]
Users can easily create non-existent videos to spread false information.
A large-scale generated video dataset (GVD) is constructed as a benchmark for model training and evaluation.
arXiv Detail & Related papers (2024-03-25T11:26:18Z) - Dynamic Erasing Network Based on Multi-Scale Temporal Features for
Weakly Supervised Video Anomaly Detection [103.92970668001277]
We propose a Dynamic Erasing Network (DE-Net) for weakly supervised video anomaly detection.
We first propose a multi-scale temporal modeling module, capable of extracting features from segments of varying lengths.
Then, we design a dynamic erasing strategy, which dynamically assesses the completeness of the detected anomalies.
arXiv Detail & Related papers (2023-12-04T09:40:11Z) - Video Anomaly Detection using GAN [0.0]
This thesis study aims to offer the solution for this use case so that human resources won't be required to keep an eye out for any unusual activity in the surveillance system records.
We have developed a novel generative adversarial network (GAN) based anomaly detection model.
arXiv Detail & Related papers (2023-11-23T16:41:30Z) - Beyond the Benchmark: Detecting Diverse Anomalies in Videos [0.6993026261767287]
Video Anomaly Detection (VAD) plays a crucial role in modern surveillance systems, aiming to identify various anomalies in real-world situations.
Current benchmark datasets predominantly emphasize simple, single-frame anomalies such as novel object detection.
We advocate for an expansion of VAD investigations to encompass intricate anomalies that extend beyond conventional benchmark boundaries.
arXiv Detail & Related papers (2023-10-03T09:22:06Z) - Towards Video Anomaly Retrieval from Video Anomaly Detection: New
Benchmarks and Model [70.97446870672069]
Video anomaly detection (VAD) has been paid increasing attention due to its potential applications.
Video Anomaly Retrieval ( VAR) aims to pragmatically retrieve relevant anomalous videos by cross-modalities.
We present two benchmarks, UCFCrime-AR and XD-Violence, constructed on top of prevalent anomaly datasets.
arXiv Detail & Related papers (2023-07-24T06:22:37Z) - FuTH-Net: Fusing Temporal Relations and Holistic Features for Aerial
Video Classification [49.06447472006251]
We propose a novel deep neural network, termed FuTH-Net, to model not only holistic features, but also temporal relations for aerial video classification.
Our model is evaluated on two aerial video classification datasets, ERA and Drone-Action, and achieves the state-of-the-art results.
arXiv Detail & Related papers (2022-09-22T21:15:58Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
We propose a network with attention modules to learn contrastive features for video salient object detection.
A co-attention formulation is utilized to combine the low-level and high-level features.
We show that the proposed method requires less computation, and performs favorably against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-03T17:40:32Z) - Event and Activity Recognition in Video Surveillance for Cyber-Physical
Systems [0.0]
Long-term motion patterns alone play a pivotal role in the task of recognizing an event.
We show that the long-term motion patterns alone play a pivotal role in the task of recognizing an event.
Only the temporal features are exploited using a hybrid Convolutional Neural Network (CNN) + Recurrent Neural Network (RNN) architecture.
arXiv Detail & Related papers (2021-11-03T08:30:38Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
We propose a novel framework to pursue discriminative and robust representation by modeling cross-scale spatial-temporal correlation.
CTL utilizes a CNN backbone and a key-points estimator to extract semantic local features from human body.
It explores a context-reinforced topology to construct multi-scale graphs by considering both global contextual information and physical connections of human body.
arXiv Detail & Related papers (2021-04-15T14:32:12Z) - An Analysis of Deep Object Detectors For Diver Detection [19.14344722263869]
We produce a dataset of approximately 105,000 annotated images of divers sourced from videos.
We train a variety of state-of-the-art deep neural networks for object detection, including SSD with Mobilenet, Faster R-CNN, and YOLO.
Based on our results, we recommend Tiny-YOLOv4 for real-time applications on robots.
arXiv Detail & Related papers (2020-11-25T01:50:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.