Noncommutative Model Selection and the Data-Driven Estimation of Real Cohomology Groups
- URL: http://arxiv.org/abs/2411.19894v1
- Date: Fri, 29 Nov 2024 17:58:45 GMT
- Title: Noncommutative Model Selection and the Data-Driven Estimation of Real Cohomology Groups
- Authors: Araceli Guzmán-Tristán, Antonio Rieser, Eduardo Velázquez-Richards,
- Abstract summary: We propose three data-driven methods for estimating the real cohomology groups $Hk (X ; mathbbR)$ of a compact metric-measure space.<n>We present the results of several computational experiments in the case that $X$ is embedded in $mathbbRn$, where two of the three algorithms performed well.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose three completely data-driven methods for estimating the real cohomology groups $H^k (X ; \mathbb{R})$ of a compact metric-measure space $(X, d_X, \mu_X)$ embedded in a metric-measure space $(Y,d_Y,\mu_Y)$, given a finite set of points $S$ sampled from a uniform distrbution $\mu_X$ on $X$, possibly corrupted with noise from $Y$. We present the results of several computational experiments in the case that $X$ is embedded in $\mathbb{R}^n$, where two of the three algorithms performed well.
Related papers
- Nonparametric MLE for Gaussian Location Mixtures: Certified Computation and Generic Behavior [28.71736321665378]
We study the nonparametric maximum likelihood estimator $widehatpi$ for Gaussian location mixtures in one dimension.
We provide an algorithm which for small enough $varepsilon>0$ computes an $varepsilon$-approximation of $widehatpi$ in Wasserstein distance in time.
We also show the distribution of $widehatpi$ conditioned to be $k$-atomic admits a density on the associated $2k-1$ dimensional parameter space.
arXiv Detail & Related papers (2025-03-26T03:36:36Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Parameterized Approximation for Robust Clustering in Discrete Geometric Spaces [2.687607197645453]
We show that even the special case of $k$-Center in dimension $Theta(log n)$ is $(sqrt3/2- o(1))$hard to approximate for FPT algorithms.
We also show that even the special case of $k$-Center in dimension $Theta(log n)$ is $(sqrt3/2- o(1))$hard to approximate for FPT algorithms.
arXiv Detail & Related papers (2023-05-12T08:43:28Z) - Learning linear dynamical systems under convex constraints [4.4351901934764975]
We consider the problem of identification of linear dynamical systems from $T$ samples of a single trajectory.
$A*$ can be reliably estimated for values $T$ smaller than what is needed for unconstrained setting.
arXiv Detail & Related papers (2023-03-27T11:49:40Z) - TURF: A Two-factor, Universal, Robust, Fast Distribution Learning
Algorithm [64.13217062232874]
One of its most powerful and successful modalities approximates every distribution to an $ell$ distance essentially at most a constant times larger than its closest $t$-piece degree-$d_$.
We provide a method that estimates this number near-optimally, hence helps approach the best possible approximation.
arXiv Detail & Related papers (2022-02-15T03:49:28Z) - Multimeasurement Generative Models [7.502947376736449]
We map the problem of sampling from an unknown distribution with density $p_X$ in $mathbbRd$ to the problem of learning and sampling $p_mathbfY$ in $mathbbRMd$ obtained by convolving $p_X$ with a fixed factorial kernel.
arXiv Detail & Related papers (2021-12-18T02:11:36Z) - Random matrices in service of ML footprint: ternary random features with
no performance loss [55.30329197651178]
We show that the eigenspectrum of $bf K$ is independent of the distribution of the i.i.d. entries of $bf w$.
We propose a novel random technique, called Ternary Random Feature (TRF)
The computation of the proposed random features requires no multiplication and a factor of $b$ less bits for storage compared to classical random features.
arXiv Detail & Related papers (2021-10-05T09:33:49Z) - Universal Regular Conditional Distributions via Probability
Measure-Valued Deep Neural Models [3.8073142980733]
We find that any model built using the proposed framework is dense in the space $C(mathcalX,mathcalP_1(mathcalY))$.
The proposed models are also shown to be capable of generically expressing the aleatoric uncertainty present in most randomized machine learning models.
arXiv Detail & Related papers (2021-05-17T11:34:09Z) - Non-Parametric Estimation of Manifolds from Noisy Data [1.0152838128195467]
We consider the problem of estimating a $d$ dimensional sub-manifold of $mathbbRD$ from a finite set of noisy samples.
We show that the estimation yields rates of convergence of $n-frack2k + d$ for the point estimation and $n-frack-12k + d$ for the estimation of tangent space.
arXiv Detail & Related papers (2021-05-11T02:29:33Z) - Small Covers for Near-Zero Sets of Polynomials and Learning Latent
Variable Models [56.98280399449707]
We show that there exists an $epsilon$-cover for $S$ of cardinality $M = (k/epsilon)O_d(k1/d)$.
Building on our structural result, we obtain significantly improved learning algorithms for several fundamental high-dimensional probabilistic models hidden variables.
arXiv Detail & Related papers (2020-12-14T18:14:08Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
Given an MDP with $S$ states, $A$ actions, the discount factor $gamma in (0,1)$, and an approximation threshold $epsilon > 0$, we provide a model-free algorithm to learn an $epsilon$-optimal policy.
For small enough $epsilon$, we show an improved algorithm with sample complexity.
arXiv Detail & Related papers (2020-06-06T13:34:41Z) - A Randomized Algorithm to Reduce the Support of Discrete Measures [79.55586575988292]
Given a discrete probability measure supported on $N$ atoms and a set of $n$ real-valued functions, there exists a probability measure that is supported on a subset of $n+1$ of the original $N$ atoms.
We give a simple geometric characterization of barycenters via negative cones and derive a randomized algorithm that computes this new measure by "greedy geometric sampling"
We then study its properties, and benchmark it on synthetic and real-world data to show that it can be very beneficial in the $Ngg n$ regime.
arXiv Detail & Related papers (2020-06-02T16:38:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.