Linearization (in)stabilities and crossed products
- URL: http://arxiv.org/abs/2411.19931v1
- Date: Fri, 29 Nov 2024 18:47:17 GMT
- Title: Linearization (in)stabilities and crossed products
- Authors: Julian De Vuyst, Stefan Eccles, Philipp A. Hoehn, Josh Kirklin,
- Abstract summary: We focus on the study of linearization (in)stabilities, exploring when linearized solutions can be integrated to exact ones.
Our aim is to provide some clarity about the status of justification, under various conditions, for imposing such constraints on the linearized theory in the $G_Nto0$ limit.
- Score: 0.0
- License:
- Abstract: Modular crossed product algebras have recently assumed an important role in perturbative quantum gravity as they lead to an intrinsic regularization of entanglement entropies by introducing quantum reference frames (QRFs) in place of explicit regulators. This is achieved by imposing certain boost constraints on gravitons, QRFs and other fields. Here, we revisit the question of how these constraints should be understood through the lens of perturbation theory and particularly the study of linearization (in)stabilities, exploring when linearized solutions can be integrated to exact ones. Our aim is to provide some clarity about the status of justification, under various conditions, for imposing such constraints on the linearized theory in the $G_N\to0$ limit as they turn out to be of second-order. While for spatially compact spacetimes there is an essentially unambiguous justification, in the presence of boundaries or the absence of isometries this depends on whether one is also interested in second-order observables. Linearization (in)stabilities occur in any gauge-covariant field theory with non-linear equations and to address this in a unified framework, we translate the subject from the usual canonical formulation into a systematic covariant phase space language. This overcomes theory-specific arguments, exhibiting the universal structure behind (in)stabilities, and permits us to cover arbitrary generally covariant theories. We comment on the relation to modular flow and illustrate our findings in several gravity and gauge theory examples.
Related papers
- Structural Stability Hypothesis of Dual Unitary Quantum Chaos [0.0]
spectral correlations over small enough energy scales are described by random matrix theory.
We consider fate of this property when moving from dual-unitary to generic quantum circuits.
arXiv Detail & Related papers (2024-02-29T12:25:29Z) - Relaxation of first-class constraints and the quantization of gauge theories: from "matter without matter" to the reappearance of time in quantum gravity [72.27323884094953]
We make a conceptual overview of an approach to the initial-value problem in canonical gauge theories.
We stress how the first-class phase-space constraints may be relaxed if we interpret them as fixing the values of new degrees of freedom.
arXiv Detail & Related papers (2024-02-19T19:00:02Z) - Convergence of Dynamics on Inductive Systems of Banach Spaces [68.8204255655161]
Examples are phase transitions in the thermodynamic limit, the emergence of classical mechanics from quantum theory at large action, and continuum quantum field theory arising from renormalization group fixed points.
We present a flexible modeling tool for the limit of theories: soft inductive limits constituting a generalization of inductive limits of Banach spaces.
arXiv Detail & Related papers (2023-06-28T09:52:20Z) - Quantum quenches in fractonic field theories [0.0]
We study out-of-equilibrium dynamics caused by global quantum quenches in fractonic scalar field theories.
We discuss a generalization to $mathbbZ_n$-symmetric field theories, and introduce a proper regularization.
arXiv Detail & Related papers (2023-06-26T18:00:02Z) - Role of boundary conditions in the full counting statistics of
topological defects after crossing a continuous phase transition [62.997667081978825]
We analyze the role of boundary conditions in the statistics of topological defects.
We show that for fast and moderate quenches, the cumulants of the kink number distribution present a universal scaling with the quench rate.
arXiv Detail & Related papers (2022-07-08T09:55:05Z) - Edge modes as dynamical frames: charges from post-selection in generally
covariant theories [0.0]
We develop a framework based on the covariant phase space formalism that identifies gravitational edge modes as dynamical reference frames.
We study the symmetries consistent with such an embedding.
We explain how the boundary conditions and presymplectic structure can be encoded into boundary actions.
arXiv Detail & Related papers (2022-05-02T13:51:45Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Internal quantum reference frames for finite Abelian groups [0.0]
Internal quantum systems as reference frames is a crucial concept in quantum gravity, gauge theories and quantum foundations.
We give a comprehensive and self-contained treatment of such quantum reference frames (QRFs) for the case when the underlying configuration space is a finite Abelian group.
arXiv Detail & Related papers (2021-07-15T18:16:02Z) - Quantum Relativity of Subsystems [58.720142291102135]
We show that different reference frame perspectives induce different sets of subsystem observable algebras, which leads to a gauge-invariant, frame-dependent notion of subsystems and entanglement.
Such a QRF perspective does not inherit the distinction between subsystems in terms of the corresponding tensor factorizability of the kinematical Hilbert space and observable algebra.
Since the condition for this to occur is contingent on the choice of QRF, the notion of subsystem locality is frame-dependent.
arXiv Detail & Related papers (2021-03-01T19:00:01Z) - Entanglement and Complexity of Purification in (1+1)-dimensional free
Conformal Field Theories [55.53519491066413]
We find pure states in an enlarged Hilbert space that encode the mixed state of a quantum field theory as a partial trace.
We analyze these quantities for two intervals in the vacuum of free bosonic and Ising conformal field theories.
arXiv Detail & Related papers (2020-09-24T18:00:13Z) - Switching quantum reference frames in the N-body problem and the absence
of global relational perspectives [0.0]
We develop a systematic method for switching between descriptions of physics relative to quantum reference frames (QRFs)
Thanks to gauge related redundancies, this leads to a perspective-neutral structure which contains all frame choices at once and via which frame perspectives can be consistently switched.
We illustrate this in a general mechanical model, namely the relational $N$-body problem in 3D space with rotational and translational symmetry.
arXiv Detail & Related papers (2018-09-13T17:58:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.