Beyond Monte Carlo: Harnessing Diffusion Models to Simulate Financial Market Dynamics
- URL: http://arxiv.org/abs/2412.00036v3
- Date: Sun, 02 Feb 2025 20:31:25 GMT
- Title: Beyond Monte Carlo: Harnessing Diffusion Models to Simulate Financial Market Dynamics
- Authors: Andrew Lesniewski, Giulio Trigila,
- Abstract summary: We propose a highly efficient and accurate methodology for generating synthetic financial market data.
The synthetic data align closely with observed market data in several key aspects.
For model training, we develop an efficient and fast algorithm based on numerical integration rather than Monte Carlo simulations.
- Score: 0.0
- License:
- Abstract: We propose a highly efficient and accurate methodology for generating synthetic financial market data using a diffusion model approach. The synthetic data produced by our methodology align closely with observed market data in several key aspects: (i) they pass the two-sample Cramer - von Mises test for portfolios of assets, and (ii) Q - Q plots demonstrate consistency across quantiles, including in the tails, between observed and generated market data. Moreover, the covariance matrices derived from a large set of synthetic market data exhibit significantly lower condition numbers compared to the estimated covariance matrices of the observed data. This property makes them suitable for use as regularized versions of the latter. For model training, we develop an efficient and fast algorithm based on numerical integration rather than Monte Carlo simulations. The methodology is tested on a large set of equity data.
Related papers
- MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
We propose Meet-In-The-Middle based MITA, which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions.
arXiv Detail & Related papers (2024-10-12T07:02:33Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
In science and engineering, we often work with models designed for accurate prediction of variables of interest.
Recognizing that these models are approximations of reality, it becomes desirable to apply multiple models to the same data and integrate their outcomes.
arXiv Detail & Related papers (2024-03-03T04:21:21Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Generative Machine Learning for Multivariate Equity Returns [0.0]
We study the efficacy of conditional importance weighted autoencoders and conditional normalizing flows for the task of modeling the returns of equities.
The main problem we work to address is modeling the joint distribution of all the members of the S&P 500, or, in other words, learning a 500-dimensional joint distribution.
We show that this generative model has a broad range of applications in finance, including generating realistic synthetic data, volatility and correlation estimation, risk analysis, and portfolio optimization.
arXiv Detail & Related papers (2023-11-21T18:41:48Z) - Mixture of Coupled HMMs for Robust Modeling of Multivariate Healthcare
Time Series [7.5986411724707095]
We propose a novel class of models, a mixture of coupled hidden Markov models (M-CHMM)
To make the model learning feasible, we derive two algorithms to sample the sequences of the latent variables in the CHMM.
Compared to existing inference methods, our algorithms are computationally tractable, improve mixing, and allow for likelihood estimation.
arXiv Detail & Related papers (2023-11-14T02:55:37Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
We show how a new model, similar to a logistic regression, may be learned from aggregated data only by approximating the unobserved feature distribution with a maximum entropy hypothesis.
We present empirical evidence on several public datasets that the model learned this way can achieve performances comparable to those of a logistic model trained with the full unaggregated data.
arXiv Detail & Related papers (2022-10-05T09:17:27Z) - CNN-based Realized Covariance Matrix Forecasting [0.0]
We propose an end-to-end trainable model built on the CNN and Conal LSTM (ConvLSTM)
It focuses on local structures and correlations and learns a nonlinear mapping that connect the historical realized covariance matrices to the future one.
Our empirical studies on synthetic and real-world datasets demonstrate its excellent forecasting ability compared with several advanced volatility models.
arXiv Detail & Related papers (2021-07-22T12:02:24Z) - Comparing Test Sets with Item Response Theory [53.755064720563]
We evaluate 29 datasets using predictions from 18 pretrained Transformer models on individual test examples.
We find that Quoref, HellaSwag, and MC-TACO are best suited for distinguishing among state-of-the-art models.
We also observe span selection task format, which is used for QA datasets like QAMR or SQuAD2.0, is effective in differentiating between strong and weak models.
arXiv Detail & Related papers (2021-06-01T22:33:53Z) - A Data-driven Market Simulator for Small Data Environments [0.5872014229110214]
Neural network based data-driven market simulation unveils a new and flexible way of modelling financial time series.
We show how a rough paths perspective combined with a parsimonious Variational Autoencoder framework provides a powerful way for encoding and evaluating financial time series.
arXiv Detail & Related papers (2020-06-21T14:04:21Z) - Gaussian process imputation of multiple financial series [71.08576457371433]
Multiple time series such as financial indicators, stock prices and exchange rates are strongly coupled due to their dependence on the latent state of the market.
We focus on learning the relationships among financial time series by modelling them through a multi-output Gaussian process.
arXiv Detail & Related papers (2020-02-11T19:18:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.