MOSABench: Multi-Object Sentiment Analysis Benchmark for Evaluating Multimodal Large Language Models Understanding of Complex Image
- URL: http://arxiv.org/abs/2412.00060v1
- Date: Mon, 25 Nov 2024 09:00:36 GMT
- Title: MOSABench: Multi-Object Sentiment Analysis Benchmark for Evaluating Multimodal Large Language Models Understanding of Complex Image
- Authors: Shezheng Song, Chengxiang He, Shasha Li, Shan Zhao, Chengyu Wang, Tianwei Yan, Xiaopeng Li, Qian Wan, Jun Ma, Jie Yu, Xiaoguang Mao,
- Abstract summary: We introduce MOSABench, a novel evaluation dataset designed specifically for multi-object sentiment analysis.
Key innovations in MOSABench include distance-based target annotation, post-processing for evaluation to standardize outputs, and an improved scoring mechanism.
This research underscores the need for MLLMs to enhance accuracy in complex, multi-object sentiment analysis tasks.
- Score: 16.040813949620958
- License:
- Abstract: Multimodal large language models (MLLMs) have shown remarkable progress in high-level semantic tasks such as visual question answering, image captioning, and emotion recognition. However, despite advancements, there remains a lack of standardized benchmarks for evaluating MLLMs performance in multi-object sentiment analysis, a key task in semantic understanding. To address this gap, we introduce MOSABench, a novel evaluation dataset designed specifically for multi-object sentiment analysis. MOSABench includes approximately 1,000 images with multiple objects, requiring MLLMs to independently assess the sentiment of each object, thereby reflecting real-world complexities. Key innovations in MOSABench include distance-based target annotation, post-processing for evaluation to standardize outputs, and an improved scoring mechanism. Our experiments reveal notable limitations in current MLLMs: while some models, like mPLUG-owl and Qwen-VL2, demonstrate effective attention to sentiment-relevant features, others exhibit scattered focus and performance declines, especially as the spatial distance between objects increases. This research underscores the need for MLLMs to enhance accuracy in complex, multi-object sentiment analysis tasks and establishes MOSABench as a foundational tool for advancing sentiment analysis capabilities in MLLMs.
Related papers
- Analyzing and Boosting the Power of Fine-Grained Visual Recognition for Multi-modal Large Language Models [31.34575955517015]
Finedefics is an MLLM that enhances the model's FGVR capability by incorporating informative attribute descriptions of objects into the training phase.
We employ contrastive learning on object-attribute pairs and attribute-category pairs simultaneously and use examples from similar but incorrect categories as hard negatives.
Extensive evaluations across multiple popular FGVR datasets demonstrate that Finedefics outperforms existing MLLMs of comparable parameter sizes.
arXiv Detail & Related papers (2025-01-25T08:52:43Z) - EmbodiedEval: Evaluate Multimodal LLMs as Embodied Agents [57.4686961979566]
EmbodiedEval is a comprehensive and interactive evaluation benchmark for MLLMs with embodied tasks.
It covers a broad spectrum of existing embodied AI tasks with significantly enhanced diversity.
We evaluated the state-of-the-art MLLMs on EmbodiedEval and found that they have a significant shortfall compared to human level on embodied tasks.
arXiv Detail & Related papers (2025-01-21T03:22:10Z) - Benchmarking Large and Small MLLMs [71.78055760441256]
Large multimodal language models (MLLMs) have achieved remarkable advancements in understanding and generating multimodal content.
However, their deployment faces significant challenges, including slow inference, high computational cost, and impracticality for on-device applications.
Small MLLMs, exemplified by the LLava-series models and Phi-3-Vision, offer promising alternatives with faster inference, reduced deployment costs, and the ability to handle domain-specific scenarios.
arXiv Detail & Related papers (2025-01-04T07:44:49Z) - Instruction-Guided Fusion of Multi-Layer Visual Features in Large Vision-Language Models [50.98559225639266]
We investigate the contributions of visual features from different encoder layers using 18 benchmarks spanning 6 task categories.
Our findings reveal that multilayer features provide complementary strengths with varying task dependencies, and uniform fusion leads to suboptimal performance.
We propose the instruction-guided vision aggregator, a module that dynamically integrates multi-layer visual features based on textual instructions.
arXiv Detail & Related papers (2024-12-26T05:41:31Z) - MC-Bench: A Benchmark for Multi-Context Visual Grounding in the Era of MLLMs [61.56904387052982]
This paper proposes a new visual grounding task called multi-context visual grounding.
It aims to localize instances of interest across multiple images based on open-ended text prompts.
We benchmark over 20 state-of-the-art MLLMs and foundation models with potential multi-context visual grounding capabilities.
arXiv Detail & Related papers (2024-10-16T07:52:57Z) - Visualization Literacy of Multimodal Large Language Models: A Comparative Study [12.367399155606162]
multimodal large language models (MLLMs) combine the inherent power of large language models (LLMs) with the renewed capabilities to reason about the multimodal context.
Many recent works in visualization have demonstrated MLLMs' capability to understand and interpret visualization results and explain the content of the visualization to users in natural language.
In this work, we aim to fill the gap by utilizing the concept of visualization literacy to evaluate MLLMs.
arXiv Detail & Related papers (2024-06-24T17:52:16Z) - Proximity QA: Unleashing the Power of Multi-Modal Large Language Models
for Spatial Proximity Analysis [45.62657605766754]
Multi-modal large language models (MLLMs) have demonstrated remarkable vision-language capabilities.
Proximity QA is a novel framework designed to enable MLLMs to infer the proximity relationship between objects in images.
We have conducted extensive experiments to validate Proximity QA's superior ability in depth perception and proximity analysis.
arXiv Detail & Related papers (2024-01-31T14:21:49Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
This paper introduces a scalable test-bed to assess the capabilities of IT-LVLMs on fundamental computer vision tasks.
MERLIM contains over 300K image-question pairs and has a strong focus on detecting cross-modal "hallucination" events in IT-LVLMs.
arXiv Detail & Related papers (2023-12-03T16:39:36Z) - SEED-Bench-2: Benchmarking Multimodal Large Language Models [67.28089415198338]
Multimodal large language models (MLLMs) have recently demonstrated exceptional capabilities in generating not only texts but also images given interleaved multimodal inputs.
SEED-Bench-2 comprises 24K multiple-choice questions with accurate human annotations, which spans 27 dimensions.
We evaluate the performance of 23 prominent open-source MLLMs and summarize valuable observations.
arXiv Detail & Related papers (2023-11-28T05:53:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.