Deep Learning-Based Electricity Price Forecast for Virtual Bidding in Wholesale Electricity Market
- URL: http://arxiv.org/abs/2412.00062v1
- Date: Mon, 25 Nov 2024 20:04:16 GMT
- Title: Deep Learning-Based Electricity Price Forecast for Virtual Bidding in Wholesale Electricity Market
- Authors: Xuesong Wang, Sharaf K. Magableh, Oraib Dawaghreh, Caisheng Wang, Jiaxuan Gong, Zhongyang Zhao, Michael H. Liao,
- Abstract summary: This study presents a Transformer-based deep learning model to forecast the price spread between real-time and day-ahead electricity prices in the ERCOT (Electric Reliability Council of Texas) market.
The proposed model is trained under realistic constraints and validated using a walk-forward approach by updating the model every week.
The results show that the strategy of trading only at the peak hour with a precision score of over 50% produces nearly consistent profit over the test period.
- Score: 3.130428666578115
- License:
- Abstract: Virtual bidding plays an important role in two-settlement electric power markets, as it can reduce discrepancies between day-ahead and real-time markets. Renewable energy penetration increases volatility in electricity prices, making accurate forecasting critical for virtual bidders, reducing uncertainty and maximizing profits. This study presents a Transformer-based deep learning model to forecast the price spread between real-time and day-ahead electricity prices in the ERCOT (Electric Reliability Council of Texas) market. The proposed model leverages various time-series features, including load forecasts, solar and wind generation forecasts, and temporal attributes. The model is trained under realistic constraints and validated using a walk-forward approach by updating the model every week. Based on the price spread prediction results, several trading strategies are proposed and the most effective strategy for maximizing cumulative profit under realistic market conditions is identified through backtesting. The results show that the strategy of trading only at the peak hour with a precision score of over 50% produces nearly consistent profit over the test period. The proposed method underscores the importance of an accurate electricity price forecasting model and introduces a new method of evaluating the price forecast model from a virtual bidder's perspective, providing valuable insights for future research.
Related papers
- Conformal Prediction for Electricity Price Forecasting in the Day-Ahead and Real-Time Balancing Market [0.0]
integration of renewable energy into electricity markets poses significant challenges to price stability.
This study explores the enhancement of probabilistic price prediction using Conformal Prediction (CP) techniques.
We propose an ensemble approach that combines the efficiency of quantile regression models with the robust coverage properties of time series adapted CP techniques.
arXiv Detail & Related papers (2025-02-07T13:57:47Z) - Revisiting Day-ahead Electricity Price: Simple Model Save Millions [7.088576782842557]
We propose a simple piecewise linear model that significantly enhances forecast accuracy by directly deriving prices from readily forecastable demand-supply values.
Experiments in the day-ahead electricity markets of Shanxi province and ISO New England reveal that such forecasts could potentially save residents millions of dollars a year.
arXiv Detail & Related papers (2024-05-20T08:27:14Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Price-Aware Deep Learning for Electricity Markets [58.3214356145985]
We propose to embed electricity market-clearing optimization as a deep learning layer.
Differentiating through this layer allows for balancing between prediction and pricing errors.
We showcase the price-aware deep learning in the nexus of wind power forecasting and short-term electricity market clearing.
arXiv Detail & Related papers (2023-08-02T21:16:05Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
It is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting.
We propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the relationship between the market situation and stock-wise latent factors.
Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods.
arXiv Detail & Related papers (2023-06-05T12:58:13Z) - Multivariate Probabilistic Forecasting of Intraday Electricity Prices
using Normalizing Flows [62.997667081978825]
In Germany, the intraday electricity price typically fluctuates around the day-ahead price of the EPEX spot markets in a distinct hourly pattern.
This work proposes a probabilistic modeling approach that models the intraday price difference to the day-ahead contracts.
arXiv Detail & Related papers (2022-05-27T08:38:20Z) - Probabilistic forecasting of German electricity imbalance prices [0.0]
The exponential growth of renewable energy capacity has brought much uncertainty to electricity prices and to electricity generation.
For an energy trader participating in both markets, the forecasting of imbalance prices is of particular interest.
The forecasting is performed 30 minutes before the delivery, so that the trader might still choose the trading place.
arXiv Detail & Related papers (2022-05-23T16:32:20Z) - A Hybrid Model for Forecasting Short-Term Electricity Demand [59.372588316558826]
Currently the UK Electric market is guided by load (demand) forecasts published every thirty minutes by the regulator.
We present HYENA: a hybrid predictive model that combines feature engineering (selection of the candidate predictor features), mobile-window predictors and LSTM encoder-decoders.
arXiv Detail & Related papers (2022-05-20T22:13:25Z) - Predictive Accuracy of a Hybrid Generalized Long Memory Model for Short
Term Electricity Price Forecasting [0.0]
This study investigates the predictive performance of a new hybrid model based on the Generalized long memory autoregressive model (k-factor GARMA)
The performance of the proposed model is evaluated using data from Nord Pool Electricity markets.
arXiv Detail & Related papers (2022-04-18T12:21:25Z) - Hybrid Modelling Approaches for Forecasting Energy Spot Prices in EPEC
market [62.997667081978825]
We consider several hybrid modelling approaches for forecasting energy spot prices in EPEC market.
Data was given in terms of electricity prices for 2013-2014 years, and test data as a year of 2015.
arXiv Detail & Related papers (2020-10-14T12:45:53Z) - Ensemble Forecasting for Intraday Electricity Prices: Simulating
Trajectories [0.0]
Recent studies have shown that the hourly German Intraday Continuous Market is weak-form efficient.
A probabilistic forecasting of the hourly intraday electricity prices is performed by simulating trajectories in every trading window.
The study aims to forecast the price distribution in the German Intraday Continuous Market in the last 3 hours of trading, but the approach allows for application to other continuous markets, especially in Europe.
arXiv Detail & Related papers (2020-05-04T10:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.