STEP: Enhancing Video-LLMs' Compositional Reasoning by Spatio-Temporal Graph-guided Self-Training
- URL: http://arxiv.org/abs/2412.00161v1
- Date: Fri, 29 Nov 2024 11:54:55 GMT
- Title: STEP: Enhancing Video-LLMs' Compositional Reasoning by Spatio-Temporal Graph-guided Self-Training
- Authors: Haiyi Qiu, Minghe Gao, Long Qian, Kaihang Pan, Qifan Yu, Juncheng Li, Wenjie Wang, Siliang Tang, Yueting Zhuang, Tat-Seng Chua,
- Abstract summary: Video Large Language Models (Video-LLMs) have recently shown strong derivation in basic video understanding tasks.
Video-LLMs struggle with compositional reasoning that requires multi-step explicit-temporal inference across object relations, interactions and events.
We propose STEP, a novel graph-guided self-training method that enables VideoLLMs to generate reasoning-rich finetuning data from any raw videos to improve itself.
- Score: 87.58996020705258
- License:
- Abstract: Video Large Language Models (Video-LLMs) have recently shown strong performance in basic video understanding tasks, such as captioning and coarse-grained question answering, but struggle with compositional reasoning that requires multi-step spatio-temporal inference across object relations, interactions, and events. The hurdles to enhancing this capability include extensive manual labor, the lack of spatio-temporal compositionality in existing data and the absence of explicit reasoning supervision. In this paper, we propose STEP, a novel graph-guided self-training method that enables Video-LLMs to generate reasoning-rich fine-tuning data from any raw videos to improve itself. Specifically, we first induce Spatio-Temporal Scene Graph (STSG) representation of diverse videos to capture fine-grained, multi-granular video semantics. Then, the STSGs guide the derivation of multi-step reasoning Question-Answer (QA) data with Chain-of-Thought (CoT) rationales. Both answers and rationales are integrated as training objective, aiming to enhance model's reasoning abilities by supervision over explicit reasoning steps. Experimental results demonstrate the effectiveness of STEP across models of varying scales, with a significant 21.3\% improvement in tasks requiring three or more reasoning steps. Furthermore, it achieves superior performance with a minimal amount of self-generated rationale-enriched training samples in both compositional reasoning and comprehensive understanding benchmarks, highlighting the broad applicability and vast potential.
Related papers
- Path-of-Thoughts: Extracting and Following Paths for Robust Relational Reasoning with Large Language Models [62.12031550252253]
We present Path-of-Thoughts (PoT), a novel framework designed to tackle relation reasoning.
PoT efficiently extracts a task-agnostic graph that identifies crucial entities, relations, and attributes within the problem context.
PoT identifies relevant reasoning chains within the graph corresponding to the posed question, facilitating inference of potential answers.
arXiv Detail & Related papers (2024-12-23T20:27:12Z) - Bridging Vision and Language: Modeling Causality and Temporality in Video Narratives [0.0]
We propose an enhanced framework that integrates a Causal-Temporal Reasoning Module into state-of-the-art LVLMs.
CTRM comprises two key components: the Causal Dynamics (CDE) and the Temporal Learner (TRL)
We design a multi-stage learning strategy to optimize the model, combining pre-training on large-scale video-text datasets.
arXiv Detail & Related papers (2024-12-14T07:28:38Z) - VideoSAVi: Self-Aligned Video Language Models without Human Supervision [0.6854849895338531]
VideoSAVi is a novel self-training pipeline for vision-language models (VLMs)
It generates its own training data without extensive manual annotation.
VideoSAVi shows significant improvements across multiple benchmarks.
arXiv Detail & Related papers (2024-12-01T00:33:05Z) - VideoEspresso: A Large-Scale Chain-of-Thought Dataset for Fine-Grained Video Reasoning via Core Frame Selection [61.54044967253421]
We introduce VideoEspresso, a novel dataset that features VideoQA pairs preserving essential spatial details and temporal coherence.
Our construction pipeline employs a semantic-aware method to reduce redundancy, followed by generating QA pairs using GPT-4o.
We propose a Hybrid LVLMs Collaboration framework, featuring a Frame Selector and a two-stage instruction fine-tuned reasoning LVLM.
arXiv Detail & Related papers (2024-11-22T08:33:36Z) - Investigating Video Reasoning Capability of Large Language Models with Tropes in Movies [69.28082193942991]
This paper introduces a novel dataset, Tropes in Movies (TiM), designed as a testbed for exploring two critical yet previously overlooked video reasoning skills.
utilizing tropes from movie storytelling, TiM evaluates the reasoning capabilities of state-of-the-art LLM-based approaches.
To address these deficiencies, we propose Face-Enhanced Viper of Role Interactions (FEVoRI) and Context Query Reduction (ConQueR)
arXiv Detail & Related papers (2024-06-16T12:58:31Z) - Look, Remember and Reason: Grounded reasoning in videos with language
models [5.3445140425713245]
Multi-temporal language models (LM) have recently shown promising performance in high-level reasoning tasks on videos.
We propose training an LM end-to-end on low-level surrogate tasks, including object detection, re-identification, tracking, to endow the model with the required low-level visual capabilities.
We demonstrate the effectiveness of our framework on diverse visual reasoning tasks from the ACRE, CATER, Something-Else and STAR datasets.
arXiv Detail & Related papers (2023-06-30T16:31:14Z) - Collaborative Reasoning on Multi-Modal Semantic Graphs for
Video-Grounded Dialogue Generation [53.87485260058957]
We study video-grounded dialogue generation, where a response is generated based on the dialogue context and the associated video.
The primary challenges of this task lie in (1) the difficulty of integrating video data into pre-trained language models (PLMs)
We propose a multi-agent reinforcement learning method to collaboratively perform reasoning on different modalities.
arXiv Detail & Related papers (2022-10-22T14:45:29Z) - Object Relational Graph with Teacher-Recommended Learning for Video
Captioning [92.48299156867664]
We propose a complete video captioning system including both a novel model and an effective training strategy.
Specifically, we propose an object relational graph (ORG) based encoder, which captures more detailed interaction features to enrich visual representation.
Meanwhile, we design a teacher-recommended learning (TRL) method to make full use of the successful external language model (ELM) to integrate the abundant linguistic knowledge into the caption model.
arXiv Detail & Related papers (2020-02-26T15:34:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.