MusicGen-Chord: Advancing Music Generation through Chord Progressions and Interactive Web-UI
- URL: http://arxiv.org/abs/2412.00325v1
- Date: Sat, 30 Nov 2024 02:49:45 GMT
- Title: MusicGen-Chord: Advancing Music Generation through Chord Progressions and Interactive Web-UI
- Authors: Jongmin Jung, Andreas Jansson, Dasaem Jeong,
- Abstract summary: MusicGen-Chord modifies one-hot encoded melody chroma vectors into multi-hot encoded chord chroma vectors.
MusicGen-Remixer generates remixes of input music conditioned on textual descriptions.
- Score: 0.8192907805418583
- License:
- Abstract: MusicGen is a music generation language model (LM) that can be conditioned on textual descriptions and melodic features. We introduce MusicGen-Chord, which extends this capability by incorporating chord progression features. This model modifies one-hot encoded melody chroma vectors into multi-hot encoded chord chroma vectors, enabling the generation of music that reflects both chord progressions and textual descriptions. Furthermore, we developed MusicGen-Remixer, an application utilizing MusicGen-Chord to generate remixes of input music conditioned on textual descriptions. Both models are integrated into Replicate's web-UI using cog, facilitating broad accessibility and user-friendly controllable interaction for creating and experiencing AI-generated music.
Related papers
- SongGen: A Single Stage Auto-regressive Transformer for Text-to-Song Generation [75.86473375730392]
SongGen is a fully open-source, single-stage auto-regressive transformer for controllable song generation.
It supports two output modes: mixed mode, which generates a mixture of vocals and accompaniment directly, and dual-track mode, which synthesizes them separately.
To foster community engagement and future research, we will release our model weights, training code, annotated data, and preprocessing pipeline.
arXiv Detail & Related papers (2025-02-18T18:52:21Z) - MuVi: Video-to-Music Generation with Semantic Alignment and Rhythmic Synchronization [52.498942604622165]
This paper presents MuVi, a framework to generate music that aligns with video content.
MuVi analyzes video content through a specially designed visual adaptor to extract contextually and temporally relevant features.
We show that MuVi demonstrates superior performance in both audio quality and temporal synchronization.
arXiv Detail & Related papers (2024-10-16T18:44:56Z) - MusiConGen: Rhythm and Chord Control for Transformer-Based Text-to-Music Generation [19.878013881045817]
MusiConGen is a temporally-conditioned Transformer-based text-to-music model.
It integrates automatically-extracted rhythm and chords as the condition signal.
We show that MusiConGen can generate realistic backing track music that aligns well with the specified conditions.
arXiv Detail & Related papers (2024-07-21T05:27:53Z) - Instruct-MusicGen: Unlocking Text-to-Music Editing for Music Language Models via Instruction Tuning [24.6866990804501]
Instruct-MusicGen is a novel approach that finetunes a pretrained MusicGen model to efficiently follow editing instructions.
Remarkably, Instruct-MusicGen only introduces 8% new parameters to the original MusicGen model and only trains for 5K steps.
arXiv Detail & Related papers (2024-05-28T17:27:20Z) - ChatMusician: Understanding and Generating Music Intrinsically with LLM [81.48629006702409]
ChatMusician is an open-source Large Language Models (LLMs) that integrates intrinsic musical abilities.
It can understand and generate music with a pure text tokenizer without any external multi-modal neural structures or tokenizers.
Our model is capable of composing well-structured, full-length music, conditioned on texts, chords, melodies, motifs, musical forms, etc.
arXiv Detail & Related papers (2024-02-25T17:19:41Z) - Arrange, Inpaint, and Refine: Steerable Long-term Music Audio Generation and Editing via Content-based Controls [6.176747724853209]
Large Language Models (LLMs) have shown promise in generating high-quality music, but their focus on autoregressive generation limits their utility in music editing tasks.
We propose a novel approach leveraging a parameter-efficient heterogeneous adapter combined with a masking training scheme.
Our method integrates frame-level content-based controls, facilitating track-conditioned music refinement and score-conditioned music arrangement.
arXiv Detail & Related papers (2024-02-14T19:00:01Z) - Video2Music: Suitable Music Generation from Videos using an Affective
Multimodal Transformer model [32.801213106782335]
We develop a generative music AI framework, Video2Music, that can match a provided video.
In a thorough experiment, we show that our proposed framework can generate music that matches the video content in terms of emotion.
arXiv Detail & Related papers (2023-11-02T03:33:00Z) - Simple and Controllable Music Generation [94.61958781346176]
MusicGen is a single Language Model (LM) that operates over several streams of compressed discrete music representation, i.e., tokens.
Unlike prior work, MusicGen is comprised of a single-stage transformer LM together with efficient token interleaving patterns.
arXiv Detail & Related papers (2023-06-08T15:31:05Z) - GETMusic: Generating Any Music Tracks with a Unified Representation and
Diffusion Framework [58.64512825534638]
Symbolic music generation aims to create musical notes, which can help users compose music.
We introduce a framework known as GETMusic, with GET'' standing for GEnerate music Tracks''
GETScore represents musical notes as tokens and organizes tokens in a 2D structure, with tracks stacked vertically and progressing horizontally over time.
Our proposed representation, coupled with the non-autoregressive generative model, empowers GETMusic to generate music with any arbitrary source-target track combinations.
arXiv Detail & Related papers (2023-05-18T09:53:23Z) - RL-Duet: Online Music Accompaniment Generation Using Deep Reinforcement
Learning [69.20460466735852]
This paper presents a deep reinforcement learning algorithm for online accompaniment generation.
The proposed algorithm is able to respond to the human part and generate a melodic, harmonic and diverse machine part.
arXiv Detail & Related papers (2020-02-08T03:53:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.