Toward Fair Graph Neural Networks Via Dual-Teacher Knowledge Distillation
- URL: http://arxiv.org/abs/2412.00382v1
- Date: Sat, 30 Nov 2024 07:19:34 GMT
- Title: Toward Fair Graph Neural Networks Via Dual-Teacher Knowledge Distillation
- Authors: Chengyu Li, Debo Cheng, Guixian Zhang, Yi Li, Shichao Zhang,
- Abstract summary: We introduce FairDTD, a novel Fair representation learning framework built on Dual-Teacher Distillation.
We show that FairDTD achieves optimal fairness while preserving high model utility, showcasing its effectiveness in fair representation learning for GNNs.
- Score: 10.253384447622992
- License:
- Abstract: Graph Neural Networks (GNNs) have demonstrated strong performance in graph representation learning across various real-world applications. However, they often produce biased predictions caused by sensitive attributes, such as religion or gender, an issue that has been largely overlooked in existing methods. Recently, numerous studies have focused on reducing biases in GNNs. However, these approaches often rely on training with partial data (e.g., using either node features or graph structure alone), which can enhance fairness but frequently compromises model utility due to the limited utilization of available graph information. To address this tradeoff, we propose an effective strategy to balance fairness and utility in knowledge distillation. Specifically, we introduce FairDTD, a novel Fair representation learning framework built on Dual-Teacher Distillation, leveraging a causal graph model to guide and optimize the design of the distillation process. Specifically, FairDTD employs two fairness-oriented teacher models: a feature teacher and a structure teacher, to facilitate dual distillation, with the student model learning fairness knowledge from the teachers while also leveraging full data to mitigate utility loss. To enhance information transfer, we incorporate graph-level distillation to provide an indirect supplement of graph information during training, as well as a node-specific temperature module to improve the comprehensive transfer of fair knowledge. Experiments on diverse benchmark datasets demonstrate that FairDTD achieves optimal fairness while preserving high model utility, showcasing its effectiveness in fair representation learning for GNNs.
Related papers
- Distilling Knowledge from Self-Supervised Teacher by Embedding Graph
Alignment [52.704331909850026]
We formulate a new knowledge distillation framework to transfer the knowledge from self-supervised pre-trained models to any other student network.
Inspired by the spirit of instance discrimination in self-supervised learning, we model the instance-instance relations by a graph formulation in the feature embedding space.
Our distillation scheme can be flexibly applied to transfer the self-supervised knowledge to enhance representation learning on various student networks.
arXiv Detail & Related papers (2022-11-23T19:27:48Z) - Directed Acyclic Graph Factorization Machines for CTR Prediction via
Knowledge Distillation [65.62538699160085]
We propose a Directed Acyclic Graph Factorization Machine (KD-DAGFM) to learn the high-order feature interactions from existing complex interaction models for CTR prediction via Knowledge Distillation.
KD-DAGFM achieves the best performance with less than 21.5% FLOPs of the state-of-the-art method on both online and offline experiments.
arXiv Detail & Related papers (2022-11-21T03:09:42Z) - Data-Free Adversarial Knowledge Distillation for Graph Neural Networks [62.71646916191515]
We propose the first end-to-end framework for data-free adversarial knowledge distillation on graph structured data (DFAD-GNN)
To be specific, our DFAD-GNN employs a generative adversarial network, which mainly consists of three components: a pre-trained teacher model and a student model are regarded as two discriminators, and a generator is utilized for deriving training graphs to distill knowledge from the teacher model into the student model.
Our DFAD-GNN significantly surpasses state-of-the-art data-free baselines in the graph classification task.
arXiv Detail & Related papers (2022-05-08T08:19:40Z) - Fair Node Representation Learning via Adaptive Data Augmentation [9.492903649862761]
This work theoretically explains the sources of bias in node representations obtained via Graph Neural Networks (GNNs)
Building upon the analysis, fairness-aware data augmentation frameworks are developed to reduce the intrinsic bias.
Our analysis and proposed schemes can be readily employed to enhance the fairness of various GNN-based learning mechanisms.
arXiv Detail & Related papers (2022-01-21T05:49:15Z) - Online Adversarial Knowledge Distillation for Graph Neural Networks [25.902263307225816]
Knowledge distillation is used to enhance model generalization in Convolutional Neural Networks (CNNs)
In this paper, we propose an online adversarial distillation approach to train a group of graph neural networks.
arXiv Detail & Related papers (2021-12-28T02:30:11Z) - Iterative Graph Self-Distillation [161.04351580382078]
We propose a novel unsupervised graph learning paradigm called Iterative Graph Self-Distillation (IGSD)
IGSD iteratively performs the teacher-student distillation with graph augmentations.
We show that we achieve significant and consistent performance gain on various graph datasets in both unsupervised and semi-supervised settings.
arXiv Detail & Related papers (2020-10-23T18:37:06Z) - Knowledge Distillation Meets Self-Supervision [109.6400639148393]
Knowledge distillation involves extracting "dark knowledge" from a teacher network to guide the learning of a student network.
We show that the seemingly different self-supervision task can serve as a simple yet powerful solution.
By exploiting the similarity between those self-supervision signals as an auxiliary task, one can effectively transfer the hidden information from the teacher to the student.
arXiv Detail & Related papers (2020-06-12T12:18:52Z) - Distilling Knowledge from Graph Convolutional Networks [146.71503336770886]
Existing knowledge distillation methods focus on convolutional neural networks (CNNs)
We propose the first dedicated approach to distilling knowledge from a pre-trained graph convolutional network (GCN) model.
We show that our method achieves the state-of-the-art knowledge distillation performance for GCN models.
arXiv Detail & Related papers (2020-03-23T18:23:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.