PAL -- Parallel active learning for machine-learned potentials
- URL: http://arxiv.org/abs/2412.00401v1
- Date: Sat, 30 Nov 2024 08:49:53 GMT
- Title: PAL -- Parallel active learning for machine-learned potentials
- Authors: Chen Zhou, Marlen Neubert, Yuri Koide, Yumeng Zhang, Van-Quan Vuong, Tobias Schlöder, Stefanie Dehnen, Pascal Friederich,
- Abstract summary: We introduce PAL, an automated, modular, and parallel active learning library that integrates AL tasks and manages their execution and communication on shared- and distributed-memory systems.
PAL significantly reduces computational overhead and improves scalability, achieving substantial speed-ups through asynchronous parallelization on CPU and GPU hardware.
Our results show that PAL enables efficient utilization of high-performance computing resources in active learning, fostering advancements in scientific research and engineering applications.
- Score: 2.787885218564319
- License:
- Abstract: Constructing datasets representative of the target domain is essential for training effective machine learning models. Active learning (AL) is a promising method that iteratively extends training data to enhance model performance while minimizing data acquisition costs. However, current AL workflows often require human intervention and lack parallelism, leading to inefficiencies and underutilization of modern computational resources. In this work, we introduce PAL, an automated, modular, and parallel active learning library that integrates AL tasks and manages their execution and communication on shared- and distributed-memory systems using the Message Passing Interface (MPI). PAL provides users with the flexibility to design and customize all components of their active learning scenarios, including machine learning models with uncertainty estimation, oracles for ground truth labeling, and strategies for exploring the target space. We demonstrate that PAL significantly reduces computational overhead and improves scalability, achieving substantial speed-ups through asynchronous parallelization on CPU and GPU hardware. Applications of PAL to several real-world scenarios - including ground-state reactions in biomolecular systems, excited-state dynamics of molecules, simulations of inorganic clusters, and thermo-fluid dynamics - illustrate its effectiveness in accelerating the development of machine learning models. Our results show that PAL enables efficient utilization of high-performance computing resources in active learning workflows, fostering advancements in scientific research and engineering applications.
Related papers
- eFedLLM: Efficient LLM Inference Based on Federated Learning [1.6179784294541053]
Large Language Models (LLMs) herald a transformative era in artificial intelligence (AI)
This paper introduces an effective approach that enhances the operational efficiency and affordability of LLM inference.
arXiv Detail & Related papers (2024-11-24T22:50:02Z) - Multimodal Deep Learning for Low-Resource Settings: A Vector Embedding Alignment Approach for Healthcare Applications [3.2549142515720044]
We advocate for leveraging vector embeddings to enable flexible and efficient computational methodologies.
Our paper investigates the efficiency of using vector embeddings from single-modal foundation models and multi-modal Vision-Language Models.
We propose a simple yet effective inference-time method to enhance performance by aligning image-text embeddings.
arXiv Detail & Related papers (2024-06-02T01:13:01Z) - Deep Learning Inference on Heterogeneous Mobile Processors: Potentials and Pitfalls [22.49750818224266]
A growing demand to deploy computation-intensive deep learning (DL) models on resource-constrained mobile devices for real-time intelligent applications.
Mobile devices hold potential to accelerate DL inference via parallel execution across heterogeneous processors.
This paper presents a holistic empirical study to assess the capabilities and challenges associated with parallel DL inference on heterogeneous mobile processors.
arXiv Detail & Related papers (2024-05-03T04:47:23Z) - An effective and efficient green federated learning method for one-layer
neural networks [0.22499166814992436]
Federated learning (FL) is one of the most active research lines in machine learning.
We present a FL method, based on a neural network without hidden layers, capable of generating a global collaborative model in a single training round.
We show that the method performs equally well in both identically and non-identically distributed scenarios.
arXiv Detail & Related papers (2023-12-22T08:52:08Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [65.57123249246358]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
We present a model-based RL method that learns to transfer potentially useful dynamics and action demonstrations from offline data to a novel task.
The main idea is to use the world models not only as simulators for behavior learning but also as tools to measure the task relevance.
We demonstrate the advantages of our approach compared with the state-of-the-art methods in Meta-World and DeepMind Control Suite.
arXiv Detail & Related papers (2023-06-06T02:24:41Z) - On Efficient Training of Large-Scale Deep Learning Models: A Literature
Review [90.87691246153612]
The field of deep learning has witnessed significant progress, particularly in computer vision (CV), natural language processing (NLP), and speech.
The use of large-scale models trained on vast amounts of data holds immense promise for practical applications.
With the increasing demands on computational capacity, a comprehensive summarization on acceleration techniques of training deep learning models is still much anticipated.
arXiv Detail & Related papers (2023-04-07T11:13:23Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Real-time End-to-End Federated Learning: An Automotive Case Study [16.79939549201032]
We introduce an approach to real-time end-to-end Federated Learning combined with a novel asynchronous model aggregation protocol.
Our results show that asynchronous Federated Learning can significantly improve the prediction performance of local edge models and reach the same accuracy level as the centralized machine learning method.
arXiv Detail & Related papers (2021-03-22T14:16:16Z) - Learning Discrete Energy-based Models via Auxiliary-variable Local
Exploration [130.89746032163106]
We propose ALOE, a new algorithm for learning conditional and unconditional EBMs for discrete structured data.
We show that the energy function and sampler can be trained efficiently via a new variational form of power iteration.
We present an energy model guided fuzzer for software testing that achieves comparable performance to well engineered fuzzing engines like libfuzzer.
arXiv Detail & Related papers (2020-11-10T19:31:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.