ATP-LLaVA: Adaptive Token Pruning for Large Vision Language Models
- URL: http://arxiv.org/abs/2412.00447v1
- Date: Sat, 30 Nov 2024 11:42:35 GMT
- Title: ATP-LLaVA: Adaptive Token Pruning for Large Vision Language Models
- Authors: Xubing Ye, Yukang Gan, Yixiao Ge, Xiao-Ping Zhang, Yansong Tang,
- Abstract summary: ATP-LLaVA is a novel approach that adaptively determines instance-specific token pruning ratios for each Large Language Model layer.
Our approach reduces the average token count by 75% while maintaining performance, with only a minimal 1.9% degradation across seven widely used benchmarks.
- Score: 32.6661928486072
- License:
- Abstract: Large Vision Language Models (LVLMs) have achieved significant success across multi-modal tasks. However, the computational cost of processing long visual tokens can be prohibitively expensive on resource-limited devices. Previous methods have identified redundancy in visual tokens within the Large Language Model (LLM) decoder layers and have mitigated this by pruning tokens using a pre-defined or fixed ratio, thereby reducing computational overhead. Nonetheless, we observe that the impact of pruning ratio varies across different LLM layers and instances (image-prompt pairs). Therefore, it is essential to develop a layer-wise and instance-wise vision token pruning strategy to balance computational cost and model performance effectively. We propose ATP-LLaVA, a novel approach that adaptively determines instance-specific token pruning ratios for each LLM layer. Specifically, we introduce an Adaptive Token Pruning (ATP) module, which computes the importance score and pruning threshold based on input instance adaptively. The ATP module can be seamlessly integrated between any two LLM layers with negligible computational overhead. Additionally, we develop a Spatial Augmented Pruning (SAP) strategy that prunes visual tokens with both token redundancy and spatial modeling perspectives. Our approach reduces the average token count by 75% while maintaining performance, with only a minimal 1.9% degradation across seven widely used benchmarks. The project page can be accessed via https://yxxxb.github.io/ATP-LLaVA-page/.
Related papers
- LESA: Learnable LLM Layer Scaling-Up [57.0510934286449]
Training Large Language Models (LLMs) from scratch requires immense computational resources, making it prohibitively expensive.
Model scaling-up offers a promising solution by leveraging the parameters of smaller models to create larger ones.
We propose textbfLESA, a novel learnable method for depth scaling-up.
arXiv Detail & Related papers (2025-02-19T14:58:48Z) - iLLaVA: An Image is Worth Fewer Than 1/3 Input Tokens in Large Multimodal Models [24.0346607116299]
We introduce iLLaVA, a simple method that can be seamlessly deployed upon current Large Vision-Language Models (LVLMs)
iLLaVA achieves this by finding and gradually merging the redundant tokens with an accurate and fast algorithm.
On tasks across different domains including single-image, multi-images and videos, iLLaVA demonstrates strong generalizability with consistently promising efficiency.
arXiv Detail & Related papers (2024-12-09T07:22:19Z) - Accelerating Multimodal Large Language Models by Searching Optimal Vision Token Reduction [62.8375542401319]
Multimodal Large Language Models (MLLMs) encode the input image(s) as vision tokens and feed them into the language backbone.
The number of vision tokens increases quadratically as the image resolutions, leading to huge computational costs.
We propose a greedy search algorithm (G-Search) to find the least number of vision tokens to keep at each layer from the shallow to the deep.
arXiv Detail & Related papers (2024-11-30T18:54:32Z) - Inference Optimal VLMs Need Only One Visual Token but Larger Models [54.01228554126122]
Vision Language Models (VLMs) have demonstrated strong capabilities across various visual understanding and reasoning tasks.
VLMs are often constrained by high latency during inference due to substantial compute required to process the large number of input tokens.
We take some initial steps towards building approaches tailored for high token compression settings.
arXiv Detail & Related papers (2024-11-05T18:54:21Z) - Treat Visual Tokens as Text? But Your MLLM Only Needs Fewer Efforts to See [37.7015406019386]
Multimodal Large Language Models (MLLMs) treat visual tokens from visual encoders as text tokens.
As token counts grow, the quadratic scaling of computation in LLMs introduces an efficiency bottleneck.
In this study, we investigate the redundancy in visual computation at both the parameter and computational pattern levels within LLaVA.
arXiv Detail & Related papers (2024-10-08T16:13:24Z) - Sparsity Meets Similarity: Leveraging Long-Tail Distribution for Dynamic Optimized Token Representation in Multimodal Large Language Models [6.467840081978855]
multimodal large language models (MM-LLMs) have achieved significant success in various tasks.
Main computational burden arises from processingd text and visual tokens.
We propose a dynamic pruning algorithm that identifies the inflection point in the visual CLS token similarity curve.
arXiv Detail & Related papers (2024-09-02T10:49:10Z) - VideoLLM-MoD: Efficient Video-Language Streaming with Mixture-of-Depths Vision Computation [66.00245701441547]
We introduce a novel approach to reduce vision compute by leveraging redundant vision tokens "skipping layers" rather than decreasing the number of vision tokens.
Our method, VideoLLM-MoD, is inspired by mixture-of-depths LLMs and addresses the challenge of numerous vision tokens in long-term or streaming video.
arXiv Detail & Related papers (2024-08-29T17:21:58Z) - An Image is Worth 1/2 Tokens After Layer 2: Plug-and-Play Inference Acceleration for Large Vision-Language Models [65.37846460916042]
We find out that the attention computation over visual tokens is of extreme inefficiency in the deep layers of popular LVLMs.
We introduce FastV, a versatile plug-and-play method designed to optimize computational efficiency.
arXiv Detail & Related papers (2024-03-11T14:35:32Z) - ELIP: Efficient Language-Image Pre-training with Fewer Vision Tokens [75.09406436851445]
We propose a vision token pruning and merging method ELIP, to remove less influential tokens based on the supervision of language outputs.
Our experiments demonstrate that with the removal of 30$%$ vision tokens across 12 ViT layers, ELIP maintains significantly comparable performance.
arXiv Detail & Related papers (2023-09-28T05:31:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.