Graph-to-SFILES: Control structure prediction from process topologies using generative artificial intelligence
- URL: http://arxiv.org/abs/2412.00508v1
- Date: Sat, 30 Nov 2024 15:30:11 GMT
- Title: Graph-to-SFILES: Control structure prediction from process topologies using generative artificial intelligence
- Authors: Lukas Schulze Balhorn, Kevin Degens, Artur M. Schweidtmann,
- Abstract summary: Control structure design is an important but tedious step in P&ID development.
Generative artificial intelligence (AI) promises to reduce P&ID development time by supporting engineers.
We propose the Graph-to-SFILES model, a generative AI method to predict control structures from flowsheet topologies.
- Score: 0.0
- License:
- Abstract: Control structure design is an important but tedious step in P&ID development. Generative artificial intelligence (AI) promises to reduce P&ID development time by supporting engineers. Previous research on generative AI in chemical process design mainly represented processes by sequences. However, graphs offer a promising alternative because of their permutation invariance. We propose the Graph-to-SFILES model, a generative AI method to predict control structures from flowsheet topologies. The Graph-to-SFILES model takes the flowsheet topology as a graph input and returns a control-extended flowsheet as a sequence in the SFILES 2.0 notation. We compare four different graph encoder architectures, one of them being a graph neural network (GNN) proposed in this work. The Graph-to-SFILES model achieves a top-5 accuracy of 73.2% when trained on 10,000 flowsheet topologies. In addition, the proposed GNN performs best among the encoder architectures. Compared to a purely sequence-based approach, the Graph-to-SFILES model improves the top-5 accuracy for a relatively small training dataset of 1,000 flowsheets from 0.9% to 28.4%. However, the sequence-based approach performs better on a large-scale dataset of 100,000 flowsheets. These results highlight the potential of graph-based AI models to accelerate P&ID development in small-data regimes but their effectiveness on industry relevant case studies still needs to be investigated.
Related papers
- LLM-Based Multi-Agent Systems are Scalable Graph Generative Models [73.28294528654885]
GraphAgent-Generator (GAG) is a novel simulation-based framework for dynamic, text-attributed social graph generation.
GAG simulates the temporal node and edge generation processes for zero-shot social graph generation.
The resulting graphs exhibit adherence to seven key macroscopic network properties, achieving an 11% improvement in microscopic graph structure metrics.
arXiv Detail & Related papers (2024-10-13T12:57:08Z) - Amplify Graph Learning for Recommendation via Sparsity Completion [16.32861024767423]
Graph learning models have been widely deployed in collaborative filtering (CF) based recommendation systems.
Due to the issue of data sparsity, the graph structure of the original input lacks potential positive preference edges.
We propose an Amplify Graph Learning framework based on Sparsity Completion (called AGL-SC)
arXiv Detail & Related papers (2024-06-27T08:26:20Z) - GraphGPT: Generative Pre-trained Graph Eulerian Transformer [8.675197550607358]
We introduce a novel generative pre-trained model for graph learning based on the Graph Eulerian Transformer (GET)
GraphGPT achieves performance comparable to or surpassing state-of-the-art methods on multiple large-scale Open Graph Benchmark (OGB) datasets.
Notably, generative pre-training enables scaling GraphGPT to 2 billion parameters while maintaining performance gains.
arXiv Detail & Related papers (2023-12-31T16:19:30Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - Does Graph Distillation See Like Vision Dataset Counterpart? [26.530765707382457]
We propose a novel structure-broadcasting Graph dataset Distillation (SGDD) scheme for broadcasting the original structure information to the generation of the synthetic one.
We validate the proposed SGDD across 9 datasets and achieve state-of-the-art results on all of them.
arXiv Detail & Related papers (2023-10-13T15:36:48Z) - Sparsity exploitation via discovering graphical models in multi-variate
time-series forecasting [1.2762298148425795]
We propose a decoupled training method, which includes a graph generating module and a GNNs forecasting module.
First, we use Graphical Lasso (or GraphLASSO) to directly exploit the sparsity pattern from data to build graph structures.
Second, we fit these graph structures and the input data into a Graph Convolutional Recurrent Network (GCRN) to train a forecasting model.
arXiv Detail & Related papers (2023-06-29T16:48:00Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
We propose a graph gradual pruning framework termed CGP to dynamically prune GNNs.
Unlike LTH-based methods, the proposed CGP approach requires no re-training, which significantly reduces the computation costs.
Our proposed strategy greatly improves both training and inference efficiency while matching or even exceeding the accuracy of existing methods.
arXiv Detail & Related papers (2022-07-18T14:23:31Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Discrete Graph Structure Learning for Forecasting Multiple Time Series [14.459541930646205]
Time series forecasting is an extensively studied subject in statistics, economics, and computer science.
In this work, we propose learning the structure simultaneously with a graph neural network (GNN) if the graph is unknown.
Empirical evaluations show that our method is simpler, more efficient, and better performing than a recently proposed bilevel learning approach for graph structure learning.
arXiv Detail & Related papers (2021-01-18T03:36:33Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training.
FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks.
arXiv Detail & Related papers (2020-10-19T21:51:47Z) - Heuristic Semi-Supervised Learning for Graph Generation Inspired by
Electoral College [80.67842220664231]
We propose a novel pre-processing technique, namely ELectoral COllege (ELCO), which automatically expands new nodes and edges to refine the label similarity within a dense subgraph.
In all setups tested, our method boosts the average score of base models by a large margin of 4.7 points, as well as consistently outperforms the state-of-the-art.
arXiv Detail & Related papers (2020-06-10T14:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.